15-122: Principles of Imperative Computation

Recitation Week 5 Caroline Buckey, Alex Cappiello, Rob Simmons

Linked list segments

1 struct list_node {

2 int data;

3 struct list_nodex next;

4},

5 typedef struct list_node list;

6

7 bool is_segment(listx start, listx end) {
8 if (start == NULL) return false;

9 if (start == end) return true;

10 return is_segment(start—>next, end);
11 }

12

13 struct linkedlist_header {
14 list* start;

15 listx end;

16 };

17 typedef struct linkedlist_header linkedlist;
18

19 bool is_linkedlist(linkedlistx L) {

20 if (L == NULL) return false;

21 return is_segment(L—>start, L—>end);
22 }

In lecture, we talked about the is_segment (start, end) function that tells us we can start at start,
follow next pointers, and get to end without ever encountering a NULL. (We won't worry about the
problems with getting is_segment to terminate in this recitation.) A linkedlist is a non-NULL pointer
that captures a reference to both the start and end of a linked list.

Here's an example of a specification function that uses is_segment as a precondition. Why are the
pointer dereferences on line 7 and 8 safe?
1 bool eq(list* startl, listx endl, listx start2, listx end2)

2 //@requires is_segment(startl, endl);
3 //@requires is_segment(start2, end2);

4 {

5 if (startl == endl && start2 == end2) return true;

6 if (startl == endl || start2 == end2) return false;
7 return startl—>data == start2—>data

8 && eq(startl—>next, endl, start2—>next, end2);

91}

Creating a new linked list

Here's the code that creates a new linked list with one non-dummy node. Suppose linkedlist_new(12)
is called. For each of lines 4-9 (inclusive) draw a diagram that shows the state of the linked list after
that line executes. Use X for struct fields that we haven't initialized yet.

1 linkedlist* linkedlist_new(int data)
2 //@ensures is_linkedlist(\result);

31

4 listx p = alloc(struct list_node);

5 p—>data = data;

6 p—>next = alloc(struct list_node);

7 linkedlist* L = alloc(struct linkedlist_header);
8 L—>start = p;

9 L—>end = p—>next;

10 return L;
11}

Adding to the end of a linked list

We can add to either the start or the end of a linked list. When we discussed the implementation of
stacks in lecture, we were adding to the front. The following code adds a new list node to the end, the
way a queue would:

1 void add_end(linkedlist* L, int x)

2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);

4 {

5 listx p = alloc(struct list_node);
6 L—>end—>data = x;

7 L—>end—>next = p;

8 L—>end = p;

91}

Suppose add_end (L, 3) is called on a linked list L. that contains before the call, from start to end, the
sequence (1, 2). Draw the state of the linked list after each of lines 5 - 8 (inclusive). Include the list
struct separately before it has been added to the linked list.

Removing the first item from a linked list

This is the code that removes the first element from a linked list. If it were not for the second precondition,
we might remove the dummy node! This would almost certainly cause the postcondition to fail.

1 int remove(linkedlistx* L)

2 //@requires is_linkedlist(L);

3 //@requires L—>start != L—>end;

4 //@ensures is_linkedlist(L);

54

6 int x = L—>start—>data;

7 L—>start = L—>start—>next;

8 return x;

9}

Suppose remove (L) is called on a linked list L that contains before the call, from start to end, the
sequence (4, 5, 6). Draw the state of the linked list after lines 6 and 7 execute. Include an indication
of what data the variable x holds.

Using is_segment as a loop invariant

What are the loop invariants we need to prove the correctness of this function? The loop invariant, as
always, must be initially true, must be preserved by every iteration of the loop, and together with the
negation of the loop guard must imply the postcondition. What is the termination argument?

1 linkedlist* copy(linkedlistx L)

2 //@requires is_linkedlist(L);

3 //@ensures is_linkedlist(\result)
4 //@ensures eq(L—>start, L—>end, \result—>start, \result—>end);

51

6 linkedlistx N = alloc(linkedlist);
7 N—>start = alloc(list);

8 listx o = L—>start;

9 listx n = N—>start;
10 while (o != L—>end)

11

12 //@loop_invariant

13

14 //@loop_invariant

15

16 //@loop_invariant

17

18 //@loop_invariant

19 {

20 n—>data = o—>data;

21 n—>next = alloc(list);
22 0 = o—>next; n = n—>next;
23 }

24 N—>end = n;
25 }

