
15-122: Principles of Imperative Computation

Recitation Week 4 Nivedita Chopra, Rob Simmons

Checkpoint 0
Write a function to reverse a queue, using only the functions from the stack and queue interfaces.

1 void reverse(queue Q) {
2
3 // Hint : Allocate a

4 // temporary data structure
5 while() {

6
7

8
9

10 }
11 while() {

12
13

14
15

16 }
17 }

Checkpoint 1
Write a recursive function to count the size of a stack

1 int size(stack S) {
2
3

4
5

6
7

8
9

10
11

12
13

14
15
16 }

Checkpoint 2
Why couldn’t this stack size implementation be used in contracts in C0?

Checkpoint 3
The above example works because function calls use a data structure that is like a stack. Step by step,
trace out operationally the state of the computer’s memory when it calculates the size of a stack with
two strings “b” and “c”, taking account of the fact that each recursive call gets its own copy of the
assignable variables.

Checkpoint 4
In the same fashion, trace out what happens operationally in this broken reversal function, starting with
the code in main().

1 void reverse(stack S) {
2 string x;
3 stack R = stack_new();
4
5 while (!stack_empty(S)) {
6 x = pop(S);
7 push(R, x);
8 }
9

10 S = R;
11 }
12
13 int main() {
14 stack S = stack_new();
15 push(S, "foo");
16 reverse(S);
17 println(pop(S));
18 return 0;
19 }

