15-122: Principles of Imperative Computation
Recitation Week 4 Nivedita Chopra, Rob Simmons

Checkpoint 0

Write a function to reverse a queue, using only the functions from the stack and queue interfaces.

1 void reverse(queue Q) {

2

3 // Hint : Allocate a
4 // temporary data structure
5 while() {

6

7

8

9

10 }

11 while() {

12

13

14

15

16 }

17 }

Checkpoint 1

Write a recursive function to count the size of a stack

1 int size(stack S) {

© 0 N o o b N

_
= O

—
w N

=
(6, =N

16 }

Checkpoint 2

Why couldn't this stack size implementation be used in contracts in C0?

Checkpoint 3

The above example works because function calls use a data structure that is like a stack. Step by step,
trace out operationally the state of the computer's memory when it calculates the size of a stack with
two strings “b" and “c”, taking account of the fact that each recursive call gets its own copy of the
assignable variables.

Checkpoint 4

In the same fashion, trace out what happens operationally in this broken reversal function, starting with
the code in main().

1 void reverse(stack S) {
string x;
stack R = stack_new();

2

3

4

5 while (!stack_empty(S)) {
6 X = pop(S);

7 push(R, x);

8

9

}
10 S = R;
11 }
12

13 int main() {

14 stack S = stack_new();
15 push(S, "foo");

16 reverse(S);

17 println(pop(S));

18 return 0;

19 }

