
15-122: Principles of Imperative Computation

Recitation Week 2 Josh Zimmerman, Nivedita Chopra

Checkpoint 0
A water main break in GHC has, confusingly, broken the C0 compiler’s -d option! C0 contracts are
now being treated as comments, and the only way to generate assertion failures is with the assert()
statements.

Insert assert() statements into the code below so that, when the code runs, all operations (C0 state-
ments, conditional checks, and assertions) are performed at runtime in the exact same sequence that
would have occured if we compiled with -d. Not all of the blanks need to be filled in.

1 int mult(int x, int y)
2 //@requires x >= 0 && y >= 0;
3 //@ensures \result == x∗y;
4 {
5 /∗ 1 ∗/ /∗ 1 ∗/______________________________
6 int k = x; int n = y;
7 int res = 0;
8
9 /∗ 2 ∗/ /∗ 2 ∗/______________________________

10 while (n != 0)
11 //@loop_invariant x ∗ y == k ∗ n + res;
12 {
13 /∗ 3 ∗/ /∗ 3 ∗/______________________________
14 if ((k & 1) == 1) res = res + n;
15 k = k >> 1;
16 n = n << 1;
17 /∗ 4 ∗/ /∗ 4 ∗/______________________________
18 }
19 /∗ 5 ∗/ /∗ 5 ∗/______________________________
20
21 /∗ 6 ∗/ /∗ 6 ∗/______________________________
22 return res;
23 /∗ 7 ∗/ /∗ 7 ∗/______________________________
24 }
25
26 int main() {
27 int a;
28
29 /∗ 8 ∗/ /∗ 8 ∗/______________________________
30 a = mult(3,4);
31
32 /∗ 9 ∗/ /∗ 9 ∗/______________________________
33 return a;
34 }

1



Checkpoint 1
Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of
it. (For instance, O(n) goes farther to the left than O(n!) because O(n) ⊂ O(n!).) If two sets are the
same, put them on top of each other.

O(n!) O(n) O(4) O(n log(n)) O(4n+ 3) O(n2 + 20000n+ 3) O(1) O(n2) O(2n)
O(log(n)) O(log2(n)) O(log(log(n)))

Checkpoint 2
Using the formal definition of big-O, prove that n3 + 300n2 ∈ O(n3).

Checkpoint 3
Using the formal definition of big-O, prove that if f(n) ∈ O(g(n)), then k ∗ f(n) ∈ O(g(n)) for k > 0.

One interesting consequence of this is that O(logi(n)) = O(logj(n)) for all i and j (as long as they’re
both greater than 1), because of the change of base formula:

logi(n) =
logj(n)

logj(i)

But 1
logj(i)

is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.

Checkpoint 4
Simplify the following big-O bounds without changing the sets the represent:

O(3n+ 2), O(n2.5 + log2(n)), O(log10(n) + log2(7n)).

2


