
15-122: Principles of Imperative Computation

Recitation 0 Josh Zimmerman, Nivedita Chopra

Administrivia and general advice
Welcome to 15-122 recitation! Take a moment to fill in the particulars for this section, so that you know
which section you’re in as well as your TA’s name and email.

Section :

TA’s Name :

TA’s Email :

Also: remember that there’s a quiz today! You should complete it online by 10pm. Answers will be
available by tomorrow afternoon.

Basic syntax for C0 programs
Semicolons: statements are terminated by semicolons. What this means is that at the end of most
lines, you’ll need a semicolon. (exceptions are if statements, function definitions, use statements, and
loops.)

Variables: variables must be explicitly declared and all variables have a type. Variables can never change
type after they are declared. Some of the types in C0 are:

• int: integers x, where −231 ≤ x < 231

• bool: Either true or false. Useful for conditionals, loops, and more.

• string: An ordered sequence of characters like “Hello!”

• char: A single character, like ‘c’

• t[]: An array with elements of type t. Arrays are declared with alloc_array:
alloc_array(int, 10) will make an array that can hold 10 ints. This is a big distinction from
Python and some other languages: arrays have fixed size, so you need to know how long your array
will be at the time you declare it. And you need to respect the array size whenever you use it.

Conditionals: It’s an error to put something that isn’t a bool in a conditional. Note that a || b is
true if either a or b are true (and false otherwise), and a && b is true if both a and b are true (and false
otherwise). && and || (as well as other operators like +, -, etc.) are called infix operators, because they
take two arguments and the operator is placed between the two arguments. The compiler mentions the
word "infix operator" if you make a mistake with them, so it’s good to be aware of this name for them.
Here’s an example of if statements in C0:

1 if (condition) {
2 //do something if condition == true
3 }
4 else if (condition2) {
5 //do something if condition2 == true and condition == false
6 }
7 else {
8 //do something if condition == false and condition2 == false
9 }

1

Loops: There are two kinds of loops in C0— while loops and for loops.

• while loop : It takes a condition (something that evaluates to a Boolean). The loop executes
until the condition is false.

• for loop : It takes three statements separated by semicolons. Execute the first statement once at
the beginning of the loop, loop until the second statement (a condition) is false, and execute the
third statement at the end of each iteration.

while loop for loop

1 int x = 0;
2 while (x < 5) {
3 printint(x);
4 print("\n");
5 x++;
6 }

1 for (int x = 0; x < 5; x++) {
2 printint(x);
3 print("\n");
4 }

These two examples do the same thing. Here, the for loop is preferred but there are cases (like binary
search in an array, which we’ll discuss later this semester) where while loops are cleaner.

Function definition: This example defines a function called add that takes two ints as arguments and
returns an int.

1 int add (int x, int y) {
2 return x + y;
3 }

Comments: use // to start a single line comment and /* ...*/ for multi-line comments. It’s good
style to have a * at the beginning of each line in a multi-line comment.

Indentation and braces: Your code will still work if it’s not indented well, but it’s really bad style to
indent poorly. Python’s indentation rules are good and you should generally follow them in C0 too. C0
uses curly braces (i.e. { and }) to denote the starts and ends of blocks, as seen above. For single-line
blocks it’s possible to omit the curly braces, but that can make debugging very difficult if you later add
in another line to the block of code. For that reason, we highly encourage you to always use braces,
even for single-line statements.

Very Bad Okay, but Risky Good

1 if (x == 4)
2 println("x is 4");

1 if (x == 4)
2 println("x is 4");

1 if(x == 4) {
2 println("x is 4");
3 }

Another important note about indentation is that you should choose either tabs or spaces and stay
consistent, since mixing styles makes your code unreadable if someone views your code with a different
number of spaces per tab.

2

Checkpoint 0
Identify and correct the syntax errors in the following code to make it valid C0:

1 #use <conio>
2
3 def fib(i):
4 if(i == 0 or i == 1){
5 return i;
6 }
7 return fib(i − 1) + fibi(i − 2)
8
9 int main():

10 for int i=0; i < 10; i++
11 printint(fib(i))
12 print(\n)
13 return 0

Contracts
This lecture was mainly about contracts and ensuring correctness of code.

There are 4 types of annotations in C0 (for convenience, we’re using exp here to mean any Boolean
expression):

Annotation Checked
//@requires exp; before function execution
//@ensures exp; before function returns

//@loop_invariant exp; before the loop condition is checked
//@assert exp; wherever you put it in the code

There are certain special variables and functions you have access to only in annotations. One of these is
\result . It can be used only in //@ensures statements and it will give you the return value of the
function. (There are other such variables/functions that we’ll get to later in the semester.)

To help you develop an intuition about contracts, here are some explanations of the different kinds of
annotations:

• //@requires : For checking

• //@ensures : For checking

Allow use of the special expression

• //@loop_invariant : We can only write these immediately after the beginning of a while loop
or for loop.

When are these checked? .

• //@assert : Assertion statements don’t play the special role in reasoning that //@requires ,
//@ensures , and //@loop_invariant statements do. They can be very helpful for debugging
code and summarizing what you know, especially after a loop.

3

Checkpoint 1
What command would you compile with to enable contract checking in a file named fastpow.c0?

Proving correctness of the mystery function
We use contracts to both test our code and to logically reason about code. With contracts, careful
reasoning and good testing both help us to be confident that our code is correct.

Here’s a different way of looking at the mystery function from lecture yesterday. Once we have loop
invariants for the mystery function set, we can view the whole thing as a control flow diagram:

y>0?

Code that
can change
x, y, and r

P	
 (postcondi,on)	

2
3

Code that
can change
x, y, and r

1

4

5

e	
 >=	
 0	

y	
 >=	
 0	

r	
 *	
 xy	
 =	
 be	

y	
 >	
 0	

y	
 <=	
 0	

The circle labeled 1 is a of the function, and the circles labeled 2 and 3 are
. The circles labeled 4 and 5 just capture information we get from the result

of the loop guard (or loop condition), but we might write 4 as an statement.

To prove this function correct, we need to reason about the two pieces of code (pieces that this diagram
hides in the two cloud-bubbles) to ensure that our contracts never fail:

• When we reason about the upper code bubble, we assume that is true before the code
runs and show that and are true afterwards.

• When we reason about the lower code bubble, we assume , , and are
true before the code runs and show that and are true afterwards.

• To reason that the returned value r is equal to be, we combine the information from circles
and to conclude that y = 0. Together with the information in circle , this implies
that r = be.

In addition, we have to reason about termination: every time the lower code bubble runs, the value e
gets strictly smaller.

4

To summarize, in general there are four steps for proving the correctness of a function with one loop
using loop invariants:

•

•

•

•

Preservation of loop invariants
Preserving loop invariants can be a bit confusing, because we have to assume that the loop invariant,
like y >= 0 or r * POW(x,y) == POW(b,e) is true before the loop invariant is checked by assuming
that the loop invariant was true the last time the loop invariant was checked (we also assume that the
loop guard subsequently evaluated to true).

1 while (y > 0)
2 //@loop_invariant y >= 0;
3 //@loop_invariant r ∗ POW(x,y) == POW(b, e);
4 {
5 r = r ∗ x;
6 y = y − 1;
7 x = x;
8 }

When an arbitrary loop begins, we know and

.

After an arbitrary iteration of the loop, we use primed values to represent the new values in terms of the
old ones:

x′ =

y′ =

r′ =

We need to show that

This is true because

This terminates because

Because we haven’t changed any loop invariants, the rest of the correctness proof for exponentiation
is the same as it was in class. By keeping the loop invariant the same, we still have a proven-correct
function, even though we tore out loop body and replaced it with a different (and less efficient) one!

5

Greatest common divisor
Consider this specification function:

1 int gcd(int x, int y)
2 //@requires x > 0 && y > 0;

Assuming that this specification function correctly captures the notion of greatest common divisor, then
work through the process of showing that fast_gcd is correct:

1 int fast_gcd(int x, int y)
2 //@requires x > 0 && y > 0;
3 //@ensures \result == gcd(x, y);
4 {
5 int a = x;
6 int b = y;
7 while (a != b)
8 //@loop_invariant a > 0 && b > 0;
9 //@loop_invariant gcd(a, b) == gcd(x, y);

10 {
11 if (a > b) {
12 a = a − b;
13 }
14 else {
15 b = b − a;
16 }
17 }
18 return a;
19 }

6

