
15-122: Principles of Imperative Computation,
Fall 2014

Lab 14: Graphs in C

Tom Cortina(tcortina@cs) and Rob Simmons(rjsimmon@cs)

Monday, December 1, 2014

For this lab, you will show your TA your answers as you complete each activ-
ity. Autolab is not used for this lab. You should be able to complete exercise 4
(hopefully with no memory leaks) for full lab credit.
Make a directory lab14 in your private 15122 directory and copy the required files
to your lab14 directory:
cd $HOME/private/15122

cp -R /afs/andrew.cmu.edu/usr9/tcortina/public/15122-f14/lab14 lab14

This lab involves implementing a graph using an adjacency matrix rather than an
array of adjacency lists. Graphs will be specified by the following C interface (as in
graph2.h):

typedef unsigned int vertex;

typedef struct graph_header* graph;

graph graph_new(unsigned int numvert); // New graph with numvert vertices

void graph_free(graph G);

unsigned int graph_size(graph G); // Number of vertices in the graph

bool graph_hasedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(G);

//@requires !graph_hasedge(G, v, w);

1 The adjacency matrix implementation of undirected graphs

You are given an incomplete file graph2.c that should implement the graph interface
in graph2.h using an adjacency matrix. Recall that if a graph has n vertices, then its
adjacency matrix adj is an n X n array of booleans such that adj[i][j] is true if there is

1

an edge from vertex i to vertex j (for valid i and j), false otherwise. Since the graph is
undirected, if adj[i][j] is true, then adj[j][i] should also be true, and if adj[i][j] is false,
then adj[j][i] should also be false. The graph should not have any self-loops (i.e. a
vertex with an edge to itself).

Exercise 1. Complete the data structure invariant function is graph that returns true
if G points to a valid graph given the definition above, or false otherwise.

Exercise 2. Complete the graph new function that creates a new graph using a
dynamically-allocated 2D array of boolean for the adjacency matrix. Create the
2D array in two steps: first create a new 1D array of type bool*, then for each array
element, have it point to a new 1D array of type bool. You can then access the array
using the 2D notation (e.g. G->adj[0][1] = true). (Note: C has ways of supporting
2D arrays that don’t require an extra array of pointers; you’ll learn about this more
efficient way of doing things in later classes, like 15-213.)

Also complete the graph free function that frees any dynamically-allocated memory
for the given graph G.

Exercise 3. Complete the graph hasedge and graph addedge functions given their
specifications. Remember that the graph that we are implementing is an undirected
graph.

Exercise 4. Once you are done implementing the functions above, you should have
a complete graph2.c. Compile your code and test it with the given DFS and BFS
searches in graph-search2.c and the given graphs in graph-test2.c:

gcc -Wall -Wextra -Werror -std=c99 -pedantic -g -DDEBUG lib/*.c *.c

All tests should pass. (Look at the graphs in graph-test2.c to see why.) Be sure to
use valgrind also to make sure you have freed all memory you allocated!

Exercise 5. Write at least two additional tests for each of the given graphs that tests
your graph implementation further. Compile and run again to make sure all tests
pass as expected.

2 Connected graphs

Exercise 6. Write a function fully connected(G) in graph-search2.c that returns
true if a graph G is fully connected (i.e. there is a path from any vertex to any other
vertex), false otherwise. (HINT: Perform a BFS and count the number of vertices
visited. For a fully connected graph, the total should be a specific value. Test your
function on several graphs, fully connected and not fully connected.) Be sure to
update graph-search2.h and write your test code in graph-test2.c.

2

