15-122: Principles of Imperative Computation,
Fall 2014

Lab 12: Priority Queues in C

Tom Cortina(tcortina@cs) and Rob Simmons(rjsimmon@cs)

Monday, November 17, 2014

For this lab, you will show your TA your answers as you complete each activity.
Autolab is not used for this lab. You should be able to complete the first task and
at least part of the second task for full lab credit.
Make a directory lab12 in your private 15122 directory and copy the required pg*.c
files to your 1ab12 directory:

cd $HOME/private/15122

mkdir labl2

cp /afs/andrew.cmu.edu/usr9/tcortina/public/15122-f14/pg*.c labl2
Then, while you are in your lab12 directory, make a 1lib directory and copy the
required support files to your 1ib directory:

mkdir 1lib

cp /afs/andrew.cmu.edu/usr9/tcortina/public/15122-£f14/1ib/* 1lib

This lab involves using (unbounded, resizing) priority queues, specified by the fol-
lowing C interface:

typedef void *elem;
typedef bool higher_priority_fn(elem el, elem e2);
typedef struct pq_header* pq;

pa pg_new(size_t capacity, /5 >0 %/
higher_priority_fn *prior); /* != NULL, (*prior)(el, e2)
returns true if el is
STRICTLY higher priority

than e2 */
bool pq_empty(pq P);
void pg_add(pq P, elem e);
elem pg_rem(pq P); /* P must not be empty */
void pg_free(pq P); /* P must be empty */

1 Sorting using priority queues in C

Look through the files to see what code you are given. You are given a file heaps.c
that implements the priority queue interface in pq.h. Note that the header for a
priority queue now requires a function pointer to a function that determines if one
element has a higher priority than another. The type definition for this function is
given in pq.h.

Exercise 1. Complete the pgsort.c file so that it sorts an array of strings using a
priority queue. You will need to define a separate function that determines if one
string has a higher priority than another string, and pass a pointer to this function
when you create your new priority queue. We provide a simple main function for
you to test your implementation.

Compile your function as follows:

gcc -Wall -Wextra -Werror -std=c99 -pedantic -DDEBUG lib/*.c pgsort.c

In addition, use valgrind to make sure you have no memory leaks.

2 Stacks using priority queues in C

(HARDER) Use priority queues to implement stacks as defined in 1ib/stack.h.

Exercise 2. Complete the file pgstack.c with your implementation of the stack
functions. Stacks are to be implemented using a priority queue to hold the data.
Each element of the priority queue will be a stack element along with its “priority”.
We give you a main function you can use to test your implementation.

Note that your stack header consists of a priority queue (to hold all of the elements)
and a pushcount field. The pushcount field keeps track of how many elements have
been pushed on to the stack. In order for your priority queue to act like a stack, you
will need to use the pushcount field in some way. You still need a function to test for
higher priority as you did in the previous exercise.

For your stack operations that you implement, the only thing you need to check
with your data structure invariant is that the given stack pointer isn’t NULL, so
you can just write preconditions like REQUIRES(S != NULL); instead of writing an
is_stack function.

Compile your function as follows:

gcc -Wall -Wextra -Werror -std=c99 -pedantic -DDEBUG lib/*.c pgstack.c

In addition, use valgrind to make sure you have no memory leaks.
Something to ponder: Does your solution still have a subtle bug that the main
function does not trigger?

