15-122: Principles of Imperative Computation,
Fall 2014
Lab 11: Strings in C

Tom Cortina(tcortina@cs) and Rob Simmons(rjsimmon@cs)

Monday, November 10, 2014

For this lab, you will show your TA your answers once you complete your activities.
Autolab is not used for this lab.
SETUP: Make a directory 1lab11in your private 15122 directory and copy the required
lab files to your lab11 directory:

cd private/15122

mkdir labll

cp /afs/andrew.cmu.edu/usr9/tcortina/public/15122-f14/*.c labll

1 Storing and using strings using C

Load the file 1abllexl.c into a text editor. Read through the file and write down
what you think the output will be before you run the program. (The ASCII value of
’a’ is 97.) Then compile and run the program. Be sure to use all of the required flags
for the C compiler. Answer the following questions on paper:

Exercise 1. When word is initially printed out character by character, why does only
one character get printed?

Exercise 2. Change the program so word[3] = ’d’. Recompile and rerun. Explain
the change in the output. Run valgrind on your program. How do the messages
from valgrind correspond to the change we made?

Exercise 3. Change word[3] back. Uncomment the code that treats the four character
array word as a 32-bit integer. Compile and run again. Based on the answer, how are
bytes of an integer stored on the computer where you are running your code?

2 Arrays of strings

Load the file 1abllex2.c into a text editor. Read through the file and write down
what you think the output will be before you run the program. Then compile and

1



run the program. Be sure to use all of the required flags for the C compiler. Answer
the following questions on paper:

Exercise 4. What do you think happens if you reset num_states to 7? Edit the file,
compile and run it. Explain the output you see. Also use valgrind and report what
issue it finds and how this relates to the error.

Exercise 5. We never free any memory in this program, yet valgrind reports no
memory leaks. Why? Where are these strings stored? Where is the pointer variable
states stored?

3 Cstring libraries

The header file string.h outlines a number of string functions that can be used (often
incorrectly) in C programs. They include:

char *strcpy(char *dest, const char *src)
char *strncpy(char *dest, const char *src, size_t n)
size_t strlen(const char *str)

Read about how these functions work here:
http://en.wikipedia.org/wiki/C_string_handling#Functions

These functions assume that the pointers point to a NUL-terminated string (i.e.
a string that ends with, *\0’, ASCII value 0). Load the file 1abllex3.c into a text
editor. Read through the file and write down what you think the output will be
before you run the program. Then compile and run the program. Be sure to use all
of the required flags for the C compiler. Answer the following questions on paper:

Exercise 6. Did the result surprise you? Can you explain what happened? (HINT:
The buffer array is stored on the system stack along with the return location back to
main.)

Exercise 7. Comment out the call to codel and uncomment the call to code2. Note
that code2 uses strncpy instead of strcpy. Compile and run again. Explain the
result this time.

4 Programming with C strings

Exercise 8. Write a C function that reverses a string and returns a pointer a new
string with the result. The function should have the following prototype:

char *reverse(char *s);

Write a main function to test your function on a number of strings. Include only
those header files that are necessary to compile your code. If you allocate memory,
use calloc and be sure to free what you allocate.



