15-122: Principles of Imperative Computation,
Fall 2014
Lab 9: Binary Search Trees

Tom Cortina(tcortina@cs) and Rob Simmons(rjsimmon@cs)

Monday, October 27, 2014

For this lab, you will show your TA your answers once you complete your
activities. Autolab is not used for this lab. Make sure you use appropriate contracts
throughout your code.

SETUP: Make a directory lab9 in your private 15122 directory and copy the
required lab files to your 1ab9 directory:

cd private/15122

mkdir lab9

cp /afs/andrew.cmu.edu/usr9/tcortina/public/15122-f14/bst-*.c® 1lab9

1 Counting Nodes in a Binary Search Tree (BST)

Recall that we implemented a binary search tree as a doubly-linked set of nodes,
with link fields left and right. Review the code in bst-lab.c® to make sure
you understand the representation for a binary search tree as a bst_header that has
a pointer to the root of a binary search tree made up of nodes of type tree. In
addition to the structures used for a binary search tree, the operations are generally
implemented using a function that the client will call to start the operation, and
an internal helper function that actually does the work, node by node, hiding the
internal representation of the tree. Often, these tree operations are implemented
recursively due to their naturally recursive nature.

Exercise 1. Complete the bst_count client function that has one parameter: the
binary search tree B (of type bst). The function returns the total number of elements
currently stored in the binary search tree. For this exercise, do not modify the internal
data structure. Instead, traverse through the tree recursively, counting the nodes one
by one, until you have visited all of the nodes. HINT: In general, the number of
nodes in a binary search tree is equal to 1 + the number of nodes in its left subtree +
the number of nodes in its right subtree. (What is the base case here?)



To complete this function, you will need a helper function, tree_count which
has one parameter: T, a pointer to a tree node (of type tree*). This function will
be recursive and will return the number of nodes in the tree starting at the given
tree node T. The bst_count client function will then call this helper function with a
pointer to the root of the binary search tree to return the total number of nodes in the
tree.

To test your function, use the provided test file bst-testcount.c8. (Read through
the file to see how it works.) You should compile and run your code as follows:

cc® -d bst-client.c® bst-lab.c® bst-testcount.c®
./a.out

Once you have your code completed and tested well, show your work to your
TA for review.

Exercise 2. In the previous exercise, we didn’t care what elements were stored in
the binary search tree. We just counted how many there were. In this exercise, you
will count only those elements that are strictly less than a specific element e (which
may or may not be in the tree). In our design, the client is required to provide an
elem_compare function to allow us to compare two elements together to determine
their relationship: less than, equal, or greater than. See the client code for an example
for this lab.

Complete the bst_countifless client function that has two parameters: the
binary search tree B (of type bst) and an element e (of type elem). The function
returns the total number of elements currently stored in the binary search tree that
are strictly “less than” the given element, where “less than” is defined by the client-
side elem_compare function. You will need a recursive helper function again. HINT:
The functions you write will be very similar to the previous exercise, except that
when you count nodes, you don’t always add 1 to the total number of nodes in the
two subtrees. Write your own main function in a new file bst-testcountifless.c®0.
For comparisons, check the client code to determine which field of the element is
being used as the key. Once you have your code completed and tested well, show
your work to your TA for review.

2 Height of a Binary Search Tree

Exercise 3. CHALLENGE Complete the bst_height client function that has one
parameter: the binary search tree B. This function returns the height of the given
binary search tree. You will need a recursive helper function for this operation as
well. Test your solution by writing a main function in another file that computes
the heights of a number of binary search trees, including the empty tree. HINT: The
height of a binary search tree is 0 if the tree is empty. Otherwise it is 1 + the height
of its largest-height subtree.



	Counting Nodes in a Binary Search Tree (BST)
	Height of a Binary Search Tree

