15-122: Principles of Imperative Computation,
Fall 2014
Lab 8: Hash Tables

Tom Cortina(tcortina@cs) and Rob Simmons (rjsimmon@cs)

Monday, October 20, 2014

For this lab, you will show your TA your answers once you complete your
activities. You are expected to complete the first exercise for full lab credit.

SETUP: Make a directory lab8 in your private 15122 directory and copy the
required lab files to your 1ab8 directory:

cd private/15122

mkdir lab8

cp /afs/andrew.cmu.edu/usr9/tcortina/public/15122-f14/hset-*.c® lab8

1 Removing Elements from Hash Tables

Recall that we implemented a hash table using separate chaining as an array of
singly-linked lists with no dummy nodes. Review the code in hset-1lab.c0 to make
sure you understand the representation for a hash table as an hset along with the
functions hset_insert and hset_lookup.

Exercise 1. Complete the hset_remove function that has two parameters: the hset H
and an element x. The function searches the appropriate chain for the key stored in
element x. If the key is found, that element is removed from H.

The algorithm to perform this operation is similar to the lookup and insert algo-
rithms. You need to determine which chain to examine first. Then traverse the chain,
node by node, looking for a node that has an element that has a matching key. If you
find a match, then remove the entire node from the list by linking the node before
this node to the node that is after this node. BE CAREFUL: There is a special case
here to consider. Do you see it? Draw pictures to help you visualize the procedure.



To test your solution, add code to themain functionin the filehset-testremove. c@.
The code we gave you creates and inserts 9 items to a basket. Your additional code
should try to remove items from the basket based on the fruit (e.g. remove a pear,
remove a banana, remove a melon, etc.). The color should not matter because of the
way elem_equal and elem_hash were defined in hset-client.c®0.

You should compile and run your code as follows:

cc® -d hset-client.cO® hset-lab.c® hset-testremove.c0
./a.out

Once you have your code completed and tested well, show your work (code and
tests) to your TA for credit.

2 Resizing the Hash Table

Recall that load factor of a hash table is the number of elements stored divided by
the capacity of the table (e.g. the number of chains). For example, a hash table with
60 elements and a capacity of 50 has a load factor of 1.2. (If elements are evenly
distributed, then we’d expect 1.2 elements per chain.) In our hset_insert function,
we did not take into account the load factor, so our chains can eventually get too
long, reducing the effectiveness of a lookup operation.

Exercise 2. CHALLENGE Modify the hset_insert operation so that, before the
element is added to the hash table, the function doubles the capacity of the hash
table if the load factor is 1.0 or higher. Use a helper function to resize the table. Your
solution should not create new nodes for the data elements. It should reuse the nodes
already created. Just move the nodes to the new chain in the new hash table. (This
is not as easy as it seems!)

You can test your solution by using the file hset-testresize.c0. You should
compile and run your code as follows:

cc® -d hset-client.c® hset-lab.cO® hset-testresize.c0
./a.out



