
15-122: Principles of Imperative Computation,
Fall 2014

Lab 7: Hashing Strings

Tom Cortina(tcortina@cs) and Rob Simmons(rjsimmon@cs)

Monday, October 13, 2014

For this lab, you will show your TA your answers once you complete your
activities. You are expected to complete at least the first three exercises for full lab
credit; exercise 4 is highly recommended.

1 Hashing with Strings: Finding Collisions

Partial ASCII Table
32 64 @ 96 ‘

33 ! 65 A 97 a

34 " 66 B 98 b

35 # 67 C 99 c

36 $ 68 D 100 d

37 % 69 E 101 e

38 & 70 F 102 f

39 ’ 71 G 103 g

40 (72 H 104 h

41) 73 I 105 i

42 * 74 J 106 j

43 + 75 K 107 k

44 , 76 L 108 l

45 - 77 M 109 m

46 . 78 N 110 n

47 / 79 O 111 o

48 0 80 P 112 p

49 1 81 Q 113 q

50 2 82 R 114 r

51 3 83 S 115 s

52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 v

55 7 87 W 119 w

56 8 88 X 120 x

57 9 89 Y 121 y

58 : 90 Z 122 z

59 ; 91 [123 {

60 < 92 \ 124 |

61 = 93] 125 }

62 > 94 ˆ 126 ∼

63 ? 95

Recall that a hash function h(k) takes a key k as its argument
and returns an index for use in a hash table. In this lab you
will be using various hash functions on strings and examining
possibilities for collisions.

Let string s of length n (n > 0) be denoted as
s0s1s2...sn−2sn−1, where si is the ASCII value of character i in
string s. (A partial ASCII table is given to the right.) We define
five hash functions as follows:

hash len: h(s) = n

hash add: h(s) = s0 + s1 + s2 + ... + sn−2 + sn−1

hash mul32:

h(s) = (...((s0 ∗ 32 + s1) ∗ 32 + s2) ∗ 32 ... + sn−2) ∗ 32 + sn−1

hash mul31:

h(s) = (...((s0 ∗ 31 + s1) ∗ 31 + s2) ∗ 31 ... + sn−2) ∗ 31 + sn−1

hash lcg:

h(s) = f (f (... f (f (f (s0) + s1) + s2) ... + sn−2) + sn−1)
where f (x) = 1664525 ∗ x + 1013904223

1

Each hash function has been implemented for you and can be run from the
command line. For example:

$ hash_len foo bar snafu

Hashing 3 strings

"foo"

hash value = 3

hashes to index 3 in a table of size 1024

"bar"

hash value = 3

hashes to index 3 in a table of size 1024

"snafu"

hash value = 5

hashes to index 5 in a table of size 1024

Note that the command line function also reports where the element with the given
key will hash given a table size of 1024.

Exercise 1. Find three or more strings, each string containing three or more characters,
that would always collide because they have the same hash value using hash add.

Exercise 2. Find three or more strings, each string containing three or more characters,
that would always collide because they have the same hash value using hash mul32.
(Hint: use the fact that 32 is a power of 2.)

Exercise 3. Find three or more strings, each string containing three or more characters,
that would always collide because they have the same hash value using hash mul31.

2 Programming

Exercise 4. Implement your own version of hash mul31 as a function that takes a
single non-empty string as its argument and returns an integer representing the hash
value for that string using the formula given on the previous page. Demonstrate
that it works correctly by comparing the results of this function in coin with your
answers from Exercise 3. Your function does not need to compute the hash index for
a table of size 1024. (Fun fact: Java uses this algorithm for computing hash values.)

Exercise 5. CHALLENGE Using hash mul31, find three or more strings, each con-
taining three or more characters, that do not have the same exact hash values but do
collide in a hash table of size 1024.

Exercise 6. CHALLENGE Find three or more strings, each containing three or more
characters, that collide in a hash table of size 1024 using hash lcg. HINT: Write some
code to help you find the strings. Why aren’t we asking you to find hash values that
match exactly?

2

