
15-122: Principles of Imperative Computation,
Fall 2014

Lab 2: Ints and Arrays

Tom Cortina(tcortina@cs)

Monday, September 8, 2014

SETUP: In your 15122 subdirectory in your private directory, create a new
directory named lab2. Store all of your functions below in the lab2 directory.

1 Ints

Exercise 1. Write a C0 function reverse int in the file reverse int.c0 that has one
parameter i of type int and returns an int that is the bitwise reverse of the integer
parameter. For example, reverse int(0x89ABCDEF) should return 0xF7B3D591. Use
a loop in your solution, and include a loop invariant for the loop. Use coin to test
your function carefully. Be sure to run coinwith -lutil and -d.

Once you are done, add a comment to your file that answers the following state-
ment: Explain why we cannot include the following postcondition to the function if
we are running using -d:
//@ensures i == reverse int(\result);

Exercise 2. Write a C0 function reverse num in the file reverse num.c0 that has one
parameter n of type int representing a 7 digit positive decimal integer. This function
should return the decimal reversal of the given integer using a loop. Programming
hint: Think about the result you get for a positive integer modulo 10.

Here are some examples:

--> reverse_num(1357246);

6427531 (int)

--> reverse_num(15122);

2215100 (int)

--> reverse_num(42);

2400000 (int)

Include a suitable precondition for your function. Use coin to test your function
carefully. Be sure to run coinwith -d.

1



2 Arrays

Exercise 3. Write a C0 function squares array in the file array ops.c0 that has one
non-negative int parameter representing the number of elements for an array. This
function should allocate an array that can hold the given number of integers, initialize
the array so that each integer at index i is equal to i2 for all valid indices, and return
a reference to this array. Include a suitable precondition and postcondition for your
function. Also write a suitable loop invariant for the loop in your function. Use coin
to test your function carefully. Be sure to run coinwith -d.

Exercise 4. Write a C0 function sum array in the same file array ops.c0 that has two
parameters: a reference to an array A of integers and an int n representing the total
number of elements of the array. The function should return the sum of the integers
in the array A. Your function should use a loop to compute the answer by adding
each element to an accumulator one at a time. Include suitable preconditions for
your function. Use contracts to ensure the safety of all array accesses. Use coin to
test your function carefully. Be sure to run coinwith -d.

Sample execution (your array location will likely vary):

--> int[] X = squares_array(10);

X is 0x14A9010 (int[] with 10 elements)

--> sum_array(X, 10);

285 (int)

Add a postcondition that verifies your sum. (HINT: There is a closed form for
the sum of the squares 0 + 1 + 4 + 9 + 16 + ...). Test again.

Once you are done, note that overflow will occur if the sum of squares exceeds
231
− 1. Test your function to find the minimum square that causes the total sum to

overflow and then add an additional precondition so overflow does not occur. That
is, limit the maximum size of the array. Test again to make sure everything still works
correctly.

Exercise 5. Challenge: Rewrite sum array so that it uses recursion to compute the
sum of the squares in the array rather than iteration (i.e. a loop). HINT: You will
need to break this problem down into a subproblem that computes the sum of the
numbers in the array starting at index i.

3 Wrap-up

Show one of your teaching assistants your work before you leave in order to get
credit for the lab.

MAKE SURE YOU LOG OUT BEFORE YOU LEAVE!

2


	Ints
	Arrays
	Wrap-up

