
Lecture Notes on
Memory Management

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons

Lecture 19
October 30, 2014

1 Introduction

In this lecture we will start the transition from C0 to C. In some ways, the
lecture is therefore about knowledge rather than principles, a return to the
emphasis on programming that we had earlier in the semester. In future
lectures, we will explore some deeper issues in the context of C, but this
lecture is full of cautionary tales.

The main theme of this lecture is the way C manages memory. Unlike
C0 and other modern languages like Java, C#, or ML, C requires programs
to explicitly manage their memory. Allocation is relatively straightforward,
like in C0, requiring only that we correctly calculate the size of allocated
memory. Deallocating (“freeing”) memory, however, is difficult and error-
prone, even for experienced C programmers. Mistakes can either lead to
attempts to access memory that has already been deallocated, in which case
the result is undefined and may be catastrophic, or it can lead the running
program to hold on to memory no longer in use, which may slow it down
and eventually crash it when it runs out of memory. The second category
is a so-called memory leak.

2 The C0 and C Memory Model

Ultimately, “all” data resides in memory. In fact, part of the data may also
be kept in fast registers directly on the CPU. You will learn about registers
in detail in 15-213 and can learn about their use in programming languages

LECTURE NOTES OCTOBER 30, 2014

http://www.cs.cmu.edu/~213/


Memory Management L19.2

in 15-411. For the purposes of today’s lecture, it is sufficient to pretend
all data would sit in memory and ignore registers for the time being. This
simplifies the principles without losing too much precision.

The data in memory is addressed by memory addresses that fit to the
addressing of the CPU in your computer. We will just pretend 32bit ad-
dresses, because those are shorter to write down. All addresses are posi-
tive, so the lowest address is 0x00000000 and the highest address 232 − 1 =
0xFFFFFFFF. All data (with the caveat about registers) sits in memory at
some address. One important question about all data in memory is how
big it is, so that the compiler can make sure program data is stored without
accidental overlapping regions.

The basic memory layout looks as follows:

OS AREA

============

System stack (local variables and function calls)

============

unused

============

System heap (data allocated here... alloc or alloc_array)

============

.text (read only) (program instructions sit in memory)

============

OS AREA

One consequence of this memory layout is that the stack grows towards
the heap, and the heap usually grows towards the stack. The reason that
the stack is called a stack is because it operates somewhat like the principle
of the stack data structure. Your program can put new data on the top of
the stack. It can also pop elements of the stack if this data is no longer
necessary. Unlike the stack abstraction, it may appear as if your program
internally also modifies data that is on the stack, even if it is not quite at the
top of it. However, the only data on the stack that the program modifies is
in the top range of the stack (perhaps the top 512 bytes or so, depending on
the function that runs), even if it is not just the top word of the stack.

Programs cannot access memory cells that belong to the operating sys-
tem. If they try, programs get an “exception” like a segmentation fault.
Where can that happen in C0? C0 takes great care to ensure that it never
gives you any pointers to uninitialized or random or garbage data in mem-
ory, except, of course, the NULL pointer. NULL is a special pointer to the mem-

LECTURE NOTES OCTOBER 30, 2014

http://symbolaris.com/course/compiler11.html


Memory Management L19.3

ory address 0, which belongs to the operating system. Any access by a
user-land program by dereferencing a NULL pointer causes a segfault.

If, however, you are writing a program that will be running as part of
the operating system, your program has no protection against NULL pointer
dereferencing anymore, because memory address 0 is a valid address for
the operating system, even if not for regular programs. When writing code
for operating systems, you, thus, need to have mastered the art of protect-
ing against illegal NULL dereferences. This is exactly one of the things that
contracts, loop invariants, and assertions prepare you for.

3 A First Look at C

Syntactically, C and C0 are very close. Philosophically, they diverge rather
drastically. Underlying C0 are the principles of memory safety and type
safety. A program is memory safe if it only reads from memory that has
been properly allocated and initialized, and only writes to memory that
has been properly allocated. A program is type safe if all data it manipulates
have their declared types. In C0, all programs are type safe and memory
safe. The compiler guarantees this through a combination of static (that
is, compile-time) and dynamic (that is, run-time) checks. An example of
a static check is the error issued by the compiler when trying to assign an
integer to a variable declared to hold a pointer, such as

int* p = 37;

An example of a dynamic check is an array out-of-bounds error, which
would try to access memory that has not been allocated by the program.
Modern languages such as Java, ML, or Haskell are both type safe and
memory safe.

In contrast, C is neither type safe nor memory safe. This means that the
behavior of many operations in C is undefined. Unfortunately, undefined
behavior in C may yield any result or have any effect, which means that
the outcome of many programs is unpredictable. In many cases, even pro-
grams that are patently absurd will yield a consistent answer on a given
machine with a given compiler, or perhaps even across different machines
and different compilers. No amount of testing will catch the fact that such
programs have bugs, but they may break when, say, the compiler is up-
graded or details of the runtime system changes. Taken together, these
design decisions make it very difficult to write correct programs in C. This
fact is in evidence every day, when we download so-called security critical

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.4

updates to operating systems, browsers, and other software. In many cases,
the security critical flaws arise because an attacker can exploit behavior that
is undefined, but predictable across some spectrum of implementations, in
order to cause your machine to execute some arbitrary malicious code. You
will learn in 15-213 Computer Systems exactly how such attacks work.

These difficulties are compounded by the fact that there are other parts
of the C standard that are implementation defined. For example, the size of
values of type int is explicitly not specified by the C standard, but each
implementation must of course provide a size. This makes it very diffi-
cult to write portable programs. Even on one machine, the behavior of a
program might differ from compiler to compiler. We will talk more about
implementation defined behavior in the next lecture.

Despite all these problems, almost 40 years after its inception, C is still
a significant language. For one, it is the origin of the object-oriented lan-
guages C++ and strongly influenced Java and C#. For another, much sys-
tems code such as operating systems, file systems, garbage collectors, or
networking code are still written in C. Designing type-safe alternative lan-
guages for systems code is still an active area of research, including the
Static OS project at Carnegie Mellon University.

4 Undefined Behavior in C

For today’s lecture, there are three important undefined behaviors in C are:

Out-of-bounds array access: accessing outside the range of an allocated
array has undefined results.

Null pointer dereference: dereferencing the null pointer has undefined re-
sults.

Double-free: We’ll talk about this in Section 8.

Reading and writing uninitialized memory: In C0, it wasn’t possible to
ever read from initalized stack memory. In C, this is undefined be-
havior. It’s also possible to create uninitialized memory on the heap
in C, and reading from this is also undefined.

4.1 Arrays, pointers, and out-of-bounds access

When compared to C0, the most shocking difference is that C does not
distinguish arrays from pointers. Array accesses are not checked at all,

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.5

and out-of-bounds memory references (whose result is formally undefined)
may lead to unpredictable results. For example, the code fragment

int main() {

int* A = malloc(sizeof(int));

A[0] = 0; /* ok - A[0] is like *A */

A[1] = 1; /* error - not allocated */

A[317] = 29; /* error - not allocated */

A[-1] = 32; /* error - not allocated(!) */

printf("A[-1] = %d\n", A[-1]);

return 0;

}

will not raise any compile time error or even warnings, even under the
strictest settings. Here, the call to malloc allocates enough space for a single
integer in memory. In this class, we are using gcc with the following flags:

gcc -Wall -Wextra -Werror -std=c99 -pedantic

which generates all warnings (-Wall and -Wextra), turns all warnings into
errors (-Werror), and applies the C99 standard (-std=c99) pedantically
(-pedantic). The code above executes ok, and in fact prints 32, despite
four blatant errors in the code.

To discover whether such errors may have occurred at runtime, we can
use the valgrind tool.

% valgrind ./a.out

...

==nnnn== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 0 from 0)

which produces useful error messages (elided above) and indeed, flags 4
error in code whose observable behavior was bug-free.

valgrind slows down execution, but if at all feasible you should test all
your C code in the manner to uncover memory problems. For best error
messages, you should pass the -g flag to gcc which preserves some corre-
lation between binary and source code.

You can also guard memory accesses with approriate assert statements
that abort the program when attempting out-of-bounds accesses.

Conflating pointers and arrays provides a hint on how to convert C0
programs to C. We need to convert t[] which indicates a C0 array with
elements of type t to t* to indicate a pointer instead. In addition, the
alloc and alloc_array calls need to be changed, or defined by appropri-
ate macros (we’ll talk about this more later).

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.6

4.2 Null pointer dereference

In C0, an out of bounds array access or null pointer dereference will always
cause the program to print out Segmentation fault and exit aborting with
(abort with signal SIGSEGV). In C, reading or writing to an array out of
bounds may cause a segmentation fault, but it is impossible to rely on this
behavior in practice.

In contrast, it is so common that dereferencing the null pointer will lead
to a segmentation fault that it may be overlooked that this is not defined.
Nevertheless, it is undefined, dereferencing NULL may not yield an excep-
tion, particularly if your code runs in kernel mode, as part of the operating
system,

4.3 What actually happens?

If you do not get an error, then perhaps nothing at all will happen, and
perhaps memory will become silently corrupted and cause unpredictable
errors down the road. But we were able to describe, in each of the examples
above, what sorts of things were likely to happen.

There’s an old joke that whenever you encounter undefined behavior,
your computer could decide to play Happy Birthday or it could catch on fire.
This is less of a joke considering recent events:

• In 2010, Alex Halderman’s team at the University of Michigan suc-
cessfully hacked into Washington D.C.’s prototype online voting sys-
tem, and caused its web page to play the University of Michigan fight
song, “The Victors.”1

• The Stuxnet worm caused centrifuges, such as those used for ura-
nium enrichment in Iran, to malfunction, physically damaging the
devices.2

Not quite playing Happy Birthday and catching on fire, but close enough.

5 Memory Allocation

Two important system-provided functions for allocating memory are malloc
and calloc.

1Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking the Wash-
ington, D.C. Internet Voting System. Proceedings of the 16th Conference on Financial Cryp-
tography and Data Security, February 2012.

2Holger Stark. Stuxnet Virus Opens New Era of Cyber War. Spiegel Online, August 8, 2011.

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.7

malloc(sizeof(t)) allocates enough memory to hold a value of type
t. In C0, we would have written alloc(t) instead. The difference is that
alloc(t) has type t*, while malloc(sizeof(t)) returns a special type
void*, which we will discuss more in the next lecture. The important thing
to realize is that C will not even check that the type we declared for the
pointer matches the size we pass to malloc, so that while we can write this:

int* p = malloc(sizeof(int));

we can also write this:

int* p = malloc(sizeof(char));

which will generally have undefined results. Also, malloc does not guar-
antee that the memory it returns has been initialized, so the following code
is an error:

int* p = malloc(sizeof(char));

printf("%d\n", *p);

Valgrind will report the error “Use of uninitialised value of size 8”
if code with the above two lines is compiled and run.

calloc(n, sizeof(t)) allocates enough memory for n objects of type
t. Unlike malloc, it also guarantees that all memory cells are initialized
with 0. For many types, this yields a default element, such as false for
booleans, 0 for ints, ’\0’ for char, or NULL for pointers.

Both malloc and calloc may fail when there is not enough memory
available. In that case, they just return NULL. This means any code calling
these two functions should check that the return value is not NULL before
proceeding. Because that makes it tedious and error-prone to write safe
code, we have defined functions xmalloc and xcalloc which are just like
malloc and calloc, respectively, but abort computation in case the opera-
tion fails. They are thereby guaranteed to return a pointer that is not NULL,
if they return at all. These functions are in the file xalloc.c; their declara-
tions are in xalloc.h (see Section 6 for an explanation of header files).

6 Header Files

To understand how the xalloc library works, and to take our C0 imple-
mentation of binary search treas and begin turning it into a C implementa-
tion, we will need to start by explaining the C convention of using header
files to specify interfaces. Header files have the extension .h and contain

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.8

type declarations and definitions as well as function prototypes and macros,
but never code. Header files are not listed on the command line when the
compiler is invoked, but included in C source files (files with the .c ex-
tension) using the #include preprocessor directive. The typical use is to
#include3 the header file both in the implementation of a data structure
and all of its clients. In this way, we know both match the same interface.

This applies to standard libraries as well as user-written libraries. For
example, the client of the C implementation of BSTs starts with

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <assert.h>

#include "xalloc.h"

#include "contracts.h"

#include "bst.h"

#include "bst-client.h"

The form #include <filename.h> includes file filename.h which must
be one of the system libraries provided by the suite of compilation tools
(gcc, in our case). The second form #include "filename.h" looks for
filename.h in the current source directory, so this is reserved for user
files. The names of the standard libraries and the types and functions they
provide can be found in the standard reference book The C Programming
Language, 2nd edition by Brian Kernighan and Dennis Ritchie or in various
places on the Internet.4

7 Macros

Macros are another extension of C that we left out from C0. We use macros
to get some semblence of contracts in C0, which are defined in the header
file contracts.h.

Macros are expanded by a preprocessor and the result is fed to the “reg-
ular” C compiler. When we do not want REQUIRES to be checked (which is
the default, just as for @requires), there is a macro definition

#define REQUIRES(COND) ((void)0)

3when we say “include” in the rest of this lecture, we mean #include
4for example, http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

LECTURE NOTES OCTOBER 30, 2014

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/


Memory Management L19.9

which can be found in the file contracts.h. The right-hand side of this
definition, ((void)0) is the number zero, cast to have type void which
means it cannot be used as an argument to a function or operator; its result
must be ignored. When the code is compiled with

gcc -DDEBUG ...

then it is defined instead as a regular assert:

#define REQUIRES(COND) assert(COND)

In this case, any use of REQUIRES(e) is expanded into assert(e) before the
result is compiled into a runtime test.

The three macros, all of which behave identically are

REQUIRES(e);

ENSURES(e);

ASSERT(e);

although they are intended for different purposes, mirroring the @requires,
@ensures, and @assert annotations of C0. @loop_invariant is missing,
since there appears to be no good syntax to support loop invariants di-
rectly; we recommend you check them right after the exit test or at the end
of the loop using the ASSERT macro.

Another common use for macros is to define compile-time constants.
In general, it is considered good style to isolate “magic” numbers at the
beginning of a file, for easy reference; for instance, if we were coding our
E0 editor in C, it would make sense to

#define GAP_BUFFER_SIZE 16

to make it easy to change from size 16 gap buffers to some other size. The
C implementation itself uses them as well, for example, limits.h defines
INT_MAX as the maximal (signed) integer, and INT_MIN and the minimal
signed integer, and similarly for UINT_MAX for unsigned integers.

7.1 Conditional compliation

Header guards _BST_H_ are an example of conditional compilation which is
often used in systems files in order to make header files and their imple-
mentation portable. Another idiomatic use of conditional compilation is

#ifdef DEBUG

...debugging statements...

#endif

LECTURE NOTES OCTOBER 30, 2014



Memory Management L19.10

where the variable DEBUG is usually set on the gcc command line with

gcc -DDEBUG ...

Guarding debugging statements in this way generalizes the simple asser-
tion macros provided in contracts.h.

8 Freeing Memory

Unlike C0, C does not automatically manage memory. As a result, pro-
grams have to free the memory they allocate explicitly; otherwise, long-
running programs or memory-intensive programs are likely to run out of
space. For that, the C standard library provides the function free, declared
with

void free(void* p);

The restrictions as to its proper use are

1. It is only called on pointers that were returned from malloc or calloc.5

2. After memory has been freed, it is no longer referenced by the pro-
gram in any way.

Freeing memory counts as a final use, so the goals imply that you should
not free memory twice. And, indeed, in C the behavior of freeing mem-
ory that has already been freed is undefined and may be exploited by an
adversary. If these rules are violated, the result of the operations is un-
defined. The valgrind tool will catch dynamically occurring violations of
these rules, but it cannot check statically if your code will respect these
rules when executed.

The golden rule of memory management in C is

You allocate it, you free it!

By inference, if you didn’t allocate it, you are not allowed to free it! But
this rule is tricky in practice, because sometimes we do need to transfer
ownership of allocated memory so that it “belongs” to a data structure.

5or realloc, which we have not discussed

LECTURE NOTES OCTOBER 30, 2014


	Introduction
	The C0 and C Memory Model
	A First Look at C
	Undefined Behavior in C
	Arrays, pointers, and out-of-bounds access
	Null pointer dereference
	What actually happens?

	Memory Allocation
	Header Files
	Macros
	Conditional compliation

	Freeing Memory

