
Lecture Notes on
Binary Search Trees

15-122: Principles of Imperative Computation
Frank Pfenning André Platzer

Lecture 17
October 23, 2014

1 Introduction

In this lecture, we will continue considering associative arrays as we did in
the hash table lecture. This time, we will follow a different implementation
principle, however. With binary search trees we try to obtain efficient insert
and search times for associative arrays dictionaries, which we have pre-
viously implemented as hash tables. We will eventually be able to achieve
O(log(n)) worst-case asymptotic complexity for insert and search. This also
extends to delete, although we won’t discuss that operation in lecture. In
particular, the worst-case complexity of associative array operations im-
plemented as binary search trees is better than the worst-case complexity
when implemented as hash tables.

2 Ordered Associative Arrays

Hashtables are associative arrays that organize the data in an array at an
index that is determined from the key using a hash function. If the hash
function is good, this means that the element will be placed at a reasonably
random position spread out across the whole array. If it is bad, linear search
is needed to locate the element.

There are many alternative ways of implementing associative arrays.
For example, we could have stored the elements in an array, sorted by key.
Then lookup by binary search would have been O(log(n)), but insertion
would be O(n), because it takes O(log n) steps to find the right place, but

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.2

then O(n) steps to make room for that new element by shifting all bigger
elements over. We would also need to grow the array as in unbounded
arrays to make sure it does not run out of capacity. In this lecture, we will
follow similar principles, but move to a different data structure to make
insertion a cheap operation as well, not just lookup. In particular, arrays
themselves are not flexible enough for insertion, but the data structure that
we will be devising in this lecture will be.

3 Abstract Binary Search

What are the operations that we needed to be able to perform binary search?
We needed a way of comparing the key we were looking for with the key of
a given element in our data structure. Depending on the result of that com-
parison, binary search returns the position of that element if they were the
same, advances to the left if what we are looking for is smaller, or advances
to the right if what we are looking for is bigger. For binary search to work
with the complexity O(log n), it was important that binary search advances
to the left or right many steps at once, not just by one element. Indeed, if we
would follow the abstract binary search principle starting from the middle
of the array but advancing only by one index in the array, we would obtain
linear search, which has complexity O(n), not O(log n).

Thus, binary search needs a way of comparing keys and a way of ad-
vancing through the elements of the data structure very quickly, either to
the left (towards elements with smaller keys) or to the right (towards big-
ger ones). In arrays, advancing quickly is easy, because we just compute
the new index to look at as either

int next_mid = (lower + mid) / 2;

or as

int next_mid = ((mid+1) + upper) / 2;

We use the first case if advancing from mid to the left (where next_mid≤mid),
because the element we are looking for is smaller than the element at mid,
so we can discard all elements to the right of mid and have to look on the
left of mid. The second case will be used if advancing from mid to the right
(where next_mid≥mid), because the element we are looking for is bigger
than the one at mid, so we can discard all elements to the left of mid. In
Lecture 6, we also saw that both computations might actually overflow in
arithmetic, so we devised a more clever way of computing the midpoint,

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.3

but we will ignore this for simplicity here. In Lecture 6, we also did con-
sider int as the data type. Now we study data of an arbitrary type elem

provided by the client. In particular, as one step of abstraction, we will now
actually compare elements in terms of their keys.

Unfortunately, inserting into arrays remains an O(n) operation. For
other data structures, insertion is easy. For example, insertion into a doubly
linked list at a given list node is O(1). But if we use a sorted doubly linked
list, the insertion step will be easy, but finding the right position by binary
search is challenging, because we can only advance one step to the left or
right in a doubly linked list. That would throw us back into linear search
through the list to find the element, which gives a lookup complexity of
O(n). How can we combine the advantages of both: fast navigation by sev-
eral elements as in arrays, together with fast insertion as in doubly linked
lists? Before you read on, try to see if you can find an answer yourself.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.4

In order to obtain the advantages of both, and, thus, enable binary
search on a data structure that supports fast insertion, we proceed as fol-
lows. The crucial observation is that arrays provide fast access to any arbi-
trary index in the array, which is why they are called a random access data
structure, but binary search only needs very selective access from each el-
ement. Whatever element binary search is looking at, it only needs access
to that element and one (sufficiently far away) left element and one (suf-
ficiently far away) right element. If binary search has just looked at index
mid, then it will subsequently only look at either (lower + mid) / 2 or
(mid+1 + upper) / 2. In particular, for each element, we need to remem-
ber what its key is, what its left successor is and what its right successor
is, but nothing else. We use this insight to generalize the principle behind
binary search to a more general data structure.

4 Binary Search in Binary Search Trees

The data structure we have developed so far results in a (binary) tree. A
binary tree consists of a set of nodes and, for each node, its left and its right
child. Finding an element in a binary search tree follows exactly the same
idea that binary search did, just on a more abstract data structure:

1. Compare the current node to what we are looking for. Stop if equal.

2. If what we are looking for is smaller, proceed to the left successor.

3. If what we are looking for is bigger, proceed to the right successor.

What do we need to know about the binary tree to make sure that this prin-
ciple will always lookup elements correctly? What data structure invariant
do we need to maintain for the binary search tree? Do you have a sugges-
tion?

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.5

5 The Ordering Invariant

Binary search was only correct for arrays if the array was sorted. Only then
do we know that it is okay not to look at the upper half of the array if the
element we are looking for is smaller than the middle element, because, in
a sorted array, it can then only occur in the lower half, if at all. For binary
search to work correctly on binary search trees, we, thus, need to maintain a
corresponding data structure invariant. All elements to the right of a node
have keys that are bigger than the key of that node. And all the nodes to
the left of that node have smaller keys than the key at that node.

At the core of binary search trees is the ordering invariant.

Ordering Invariant. At any node with key k in a binary search
tree, all keys of the elements in the left subtree are strictly less
than k, while all keys of the elements in the right subtree are
strictly greater than k.

This implies that no key occurs more than once in a tree, and we have to
make sure our insertion function maintains this invariant.

If our binary search tree were perfectly balanced, that is, had the same
number of nodes on the left as on the right for every subtree, then the order-
ing invariant would ensure that search for an element with a given key has
asymptotic complexity O(log(n)), where n is the number of elements in the
tree. Why? When searching for a given key k in the tree, we just compare
k with the key k′ of the entry at the root. If they are equal, we have found
the entry. If k < k′ we recursively search in the left subtree, and if k′ < k
we recursively search in the right subtree. This is just like binary search,
except that instead of an array we traverse a tree data structure. Unlike in
an array, however, we will see that insertion is quick as well.

6 The Interface

The basic interface for binary search trees is almost the same as for hash
tables, because both implement the same abstract principle: associative
arrays. Binary search trees, of course, do not need a hash function. We
assume that the client defines a type elem of elements and a type key of
keys, as well as functions to extract keys from elements and to compare
keys. Then the implementation of binary search trees will provide a type
bst and functions to insert an element and to search for an element with a
given key.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.6

/* Client-side interface */

typedef ______* elem;

typedef ______ key;

key elem_key(elem e)

//@requires e != NULL;

;

int key_compare(key k1, key k2)

//@ensures -1 <= \result && \result <= 1;

;

/* Library interface */

typedef ________ bst;

bst bst_new();

void bst_insert(bst B, elem e)

//@requires e != NULL;

;

elem bst_lookup(bst B, key k); /* return NULL if not in tree */

We stipulate that elem is some form of pointer type so we can return NULL

if no element with the given key can be found. Generally, some more oper-
ations may be requested at the interface, such as the number of elements in
the tree or a function to delete an element with a given key.

The key_compare function provided by the client is different from the
equality function we used for hash tables. For binary search trees, we ac-
tually need to compare keys k1 and k2 and determine if k1 < k2, k1 = k2,
or k1 > k2. A standard approach to this in imperative languages is for a
comparison function to return an integer r, where r < 0 means k1 < k2,
r = 0 means k1 = k2, and r > 0 means k1 > k2. Our contract captures that
we expect key_compare to return no values other than -1, 0, and 1.

7 A Representation with Pointers

We will use a pointer-based implementation for trees where every node has
two pointers: one to its left child and one to its right child. A missing child
is represented as NULL, so a leaf just has two null pointers.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.7

struct tree_node {

elem data;

struct tree_node* left;

struct tree_node* right;

};

typedef struct tree_node tree;

As usual, we have a header which in this case just consists of a pointer to the
root of the tree. We often keep other information associated with the data
structure in these headers, such as the size.

struct bst_header {

tree* root;

};

8 Searching for a Key

In this lecture, we will implement insertion and lookup first before consid-
ering the data structure invariant. This is not the usual way we proceed,
but it turns out finding a good function to test the invariant is a signifi-
cant challenge—meanwhile we would like to exercise programming with
pointers in a tree a little. For now, we just assume we have two functions

bool is_ordtree(tree* T);

bool is_bst(bst B);

Search is quite straightforward, implementing the informal description
above. Recall that key_compare(k1,k2) returns −1 if k1 < k2, 0 if k1 = k2,
and 1 if k1 > k2.

elem tree_lookup(tree* T, key k)

//@requires is_ordtree(T);

//@ensures \result == NULL || key_compare(elem_key(\result), k) == 0;

{

if (T == NULL) return NULL;

int r = key_compare(k, elem_key(T->data));

if (r == 0)

return T->data;

else if (r < 0)

return tree_lookup(T->left, k);

else //@assert r > 0;

return tree_lookup(T->right, k);

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.8

}

elem bst_lookup(bst B, key k)

//@requires is_bst(B);

//@ensures \result == NULL || compare(elem_key(\result), k) == 0;

{

return tree_lookup(B->root, k);

}

We chose here a recursive implementation, following the structure of a tree,
but in practice an iterative version may also be a reasonable alternative (see
Exercise 1).

We can check the invariant: if T is ordered when tree_lookup(T) is
called (and presumably is_bst would guarantee that), then both subtrees
should be ordered as well and the invariant is preserved.

9 Inserting an Element

Inserting an element is almost as simple. We just proceed as if we are look-
ing for the key of the given element. If we find a node with that key, we just
overwrite its data field. If not, we insert it in the place where it would have
been, had it been there in the first place. This last clause, however, creates
a small difficulty. When we hit a null pointer (which indicates the key was
not already in the tree), we cannot just modify NULL. Instead, we return the
new tree so that the parent can modify itself.

tree* tree_insert(tree* T, elem e)

//@requires is_ordtree(T);

//@requires e != NULL;

//@ensures is_ordtree(\result);

{

if (T == NULL) {

/* create new node and return it */

T = alloc(struct tree_node);

T->data = e;

T->left = NULL; T->right = NULL;

return T;

}

int r = key_compare(elem_key(e), elem_key(T->data));

if (r == 0)

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.9

T->data = e; /* modify in place */

else if (r < 0)

T->left = tree_insert(T->left, e);

else //@assert r > 0;

T->right = tree_insert(T->right, e);

return T;

}

For the same reason as in tree_lookup, we expect the subtrees to be or-
dered when we make recursive calls. The result should be ordered for
analogous reasons. The returned subtree will also be useful at the root.

void bst_insert(bst B, elem e)

//@requires is_bst(B);

//@requires e != NULL;

//@ensures is_bst(B);

{

B->root = tree_insert(B->root, e);

return;

}

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.10

10 Checking the Ordering Invariant

When we analyze the structure of the recursive functions implementing
search and insert, we are tempted to say that a binary search is ordered if
either it is null, or the left and right subtrees have a key that is smaller. This
would yield the following code:

/* THIS CODE IS BUGGY */

bool is_ordtree(tree* T) {

if (T == NULL) return true; /* an empty tree is a BST */

key k = elem_key(T->data);

return (T->left == NULL

|| (key_compare(elem_key(T->left->data), k) < 0

&& is_ordtree(T->left)))

&& (T->right == NULL

|| (key_compare(k, elem_key(T->right->data)) < 0

&& is_ordtree(T->right)));

}

While this should always be true for a binary search tree, it is far weaker
than the ordering invariant stated at the beginning of lecture. Before read-
ing on, you should check your understanding of that invariant to exhibit a
tree that would satisfy the above, but violate the ordering invariant.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.11

There is actually more than one problem with this. The most glaring
one is that following tree would pass this test:

7 

11 5 

9 1 

Even though, locally, the key of the left node is always smaller and on the
right is always bigger, the node with key 9 is in the wrong place and we
would not find it with our search algorithm since we would look in the
right subtree of the root.

An alternative way of thinking about the invariant is as follows. As-
sume we are at a node with key k.

1. If we go to the left subtree, we establish an upper bound on the keys in
the subtree: they must all be smaller than k.

2. If we go to the right subtree, we establish a lower bound on the keys in
the subtree: they must all be larger than k.

The general idea then is to traverse the tree recursively, and pass down
an interval with lower and upper bounds for all the keys in the tree. The
following diagram illustrates this idea. We start at the root with an unre-
stricted interval, allowing any key, which is written as (−∞,+∞). As usual
in mathematics we write intervals as (x, z) = {y | x < y and y < z}. At
the leaves we write the interval for the subtree. For example, if there were
a left subtree of the node with key 7, all of its keys would have to be in the

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.12

interval (5, 7).

9 

5 

7 

(‐∞, +∞) 

(9, +∞) 

(‐∞, 9) 

(‐∞, 5) 

(5, 9) 

(5, 7)  (7, 9) 

The only difficulty in implementing this idea is the unbounded inter-
vals, written above as −∞ and +∞. Here is one possibility: we pass not
just the key, but the particular element which bounds the tree from which
we can extract the element. This allows us to pass NULL in case there is no
lower or upper bound.

bool is_ordered(tree* T, elem lower, elem upper) {

if (T == NULL) return true;

return T->data != NULL

&& (lower == NULL || elem_compare(lower, T->data) < 0)

&& (upper == NULL || elem_compare(T->data, upper) < 0)

&& is_ordered(T->left, lower, T->data)

&& is_ordered(T->right, T->data, upper);

}

bool is_bst(bst B) {

return B != NULL && is_ordered(B->root, NULL, NULL);

}

A word of caution: the is_ordered(T, NULL, NULL) pre- and post-
condition of the function tree_insert is actually not strong enough to
prove the correctness of the recursive function. A similar remark applies
to tree_lookup. This is because of the missing information of the bounds.
We will return to this issue in a later lecture.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.13

11 The Shape of Binary Search Trees

We have already mentioned that balanced binary search trees have good
properties, such as logarithmic time for insertion and search. The question
is if binary search trees will be balanced. This depends on the order of
insertion. Consider the insertion of numbers 1, 2, 3, and 4.

If we insert them in increasing order we obtain the following trees in
sequence.

1 

2  2 

1  1 

3 

2 

1 

3 

4 

Similarly, if we insert them in decreasing order we get a straight line along,
always going to the left. If we instead insert in the order 3, 1, 4, 2, we obtain
the following sequence of binary search trees:

3  3 

1 

3 

4 1 

3 

4 1 

2 

Clearly, the last tree is much more balanced. In the extreme, if we insert
elements with their keys in order, or reverse order, the tree will be linear,
and search time will be O(n) for n items.

These observations mean that it is extremely important to pay attention
to the balance of the tree. We will discuss ways to keep binary search trees
balanced in a later lecture.

LECTURE NOTES OCTOBER 23, 2014

Binary Search Trees L17.14

Exercises

Exercise 1 Rewrite tree_lookup to be iterative rather than recursive.

Exercise 2 Rewrite tree_insert to be iterative rather than recursive. [Hint:
The difficulty will be to update the pointers in the parents when we replace a node
that is null. For that purpose we can keep a “trailing” pointer which should be the
parent of the note currently under consideration.]

Exercise 3 The binary search tree interface only expected a single function for key
comparison to be provided by the client:

int elem_compare(elem k1, elem k2);

An alternative design would have been to, instead, expect the client to provide a
set of elem comparison functions, one for each outcome:

bool elem_equal(elem k1, elem k2);

bool elem_greater(elem k1, elem k2);

bool elem_less(elem k1, elem k2);

What are the advantages and disadvantages of such a design?

LECTURE NOTES OCTOBER 23, 2014

	Introduction
	Ordered Associative Arrays
	Abstract Binary Search
	Binary Search in Binary Search Trees
	The Ordering Invariant
	The Interface
	A Representation with Pointers
	Searching for a Key
	Inserting an Element
	Checking the Ordering Invariant
	The Shape of Binary Search Trees

