Lecture Notes on
Interfaces

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 14
October 14, 2014

1 Introduction

The notion of an interface to an implementation of an abstract data type or li-
brary is an extremely important concept in computer science. The interface
defines not only the types, but also the available operations on them and the
pre- and postconditions for these operations. For general data structures it
is also important to note the asymptotic complexity of the operations so
that potential clients can decide if the data structure serves their purpose.

For the purposes of this lecture we call the data structures and the op-
erations on them provided by an implementation the library and code that
uses the library the client.

What makes interfaces often complex is that in order for the library to
provide its services it may in turn require some operations provided by the
client. Hash tables provide an excellent example for this complexity, so we
will discuss the interface to hash tables in details before giving the hash
table implementation.

Relating to our learning goals, we have

Computational Thinking: We discuss the separation of client interfaces
and client implementations.

Algorithms and Data Structures: We discuss algorithms for hashing strings.

Programming: We revisit the char data type and use it to consider string
hashing.

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.2

2 Generic Data Structures

So far, all the data structures that we’ve considered, have always had par-
ticular type information that seemed irrelevant. In the implementation of
queues, why is it important that we have a queue of strings in particular?

// typedef _______ queue;

bool queue_empty(queue S); /* 0(1) %/
queue queue_new(); /* 0(1) */
void enq(queue S, string x); /* 0(1) */
string deq(queue S) /* 0(1) =/

/*@requires !queue_empty(S); @/ ;

It’s both wasteful and a potential source of errors to have to rewrite our
code if we want our program to use integers (or chars, or pointers to structs,
or arrays of strings...) instead of strings. A way we deal with this is by
creating a type, elem, that is used by the library but not defined in the
library:

/*x* Client interface **x/
// typedef _______ elem;

/**x Library interface *xx*/

// typedef _______ queue;

bool queue_empty(queue S); /* 0(1) %/
queue queue_new(); /* 0(1) =/
void enq(queue S, elem x); /* 0(1) */
elem deq(queue S) /* 0(1) =/

/*@requires !queue_empty(S); @/ ;

The underscores in the library interface, before queue, mean that the client
doesn’t know how the abstract type queue is implemented, and that the li-
brary is free to change this implementation without breaking any (interface-
respecting) client code. The underscores in the client interface mean that
the library doesn’t know how the abstract type elem is implement, which
means that the client is free to change this implementation without break-
ing the library. The library’s implementation just refers to the elem type,
which it expects the client to have already defined, whenever it needs to
refer to client data.

This approach is still not perfect, because any given program only sup-
ports a single type of queue element. We won’t be able to solve this problem
until we transition to C later in the semester.

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.3

3 Generic Sets and Dictionaries

Hash tables are a way of implementing both sets and dictionaries. We've
seen dictionaries in a couple of settings: dictionaries that map from dictio-
nary words (the keys) and frequency counts (the values), as well as from
operator names (the keys) to definitions stored in queues (the values).

In a dictionary, we want to have some notion of what a key is and some
notion of what a value. We want to be able to insert key-value pairs into
the dictionary, and we want to be able to lookup which value (if any) is
associated with a particular key. In a set, we don’t have a separate notion
of keys and values. Instead, we have a single idea of an element.

Sometimes the elements of a set are like examples we have already seen:
strings, zip codes, and so on. Sometimes, however, we think of the ele-
ments of a hash set as containing a key, and two elements are equivalent if
they share the same key part —a notion that will be entirely decided by the
client when they decide what an element is. Our interface for sets will then
give us a lookup function that allows us to take an element and determine
whether an equivalent element already exists in the set. As an example, the
elements in a set might be structs with fields for a student’s name, student,
school, and major. If we decide that the student ID is the key part, then we
can look up a student’s full record by creating a struct that just has the cor-
rect student id, and then finding the equivalent record in the set of student
records:

: i : H
First name: First name arry
Last name: Bovik
Last name:
andrewID bovik andrewID bovik
. Nickname: SIG_BOVIK
Nickname:
: Email bovik@cs.cmu.edu
Email
School School SCs
Major CsD

Major

4 Generic Hash Sets

When we implement the set interface with a hash table, we'll call it a hash
set or hset. When we implement the dictionary interface with a hash ta-
ble, we’ll call it a hash dictionary or hdict. Our hash set implement will be
generic; it will work regardless of the type of keys or elements to be stored
in the table.

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.4

We need to think carefully about which types and functions are pro-
vided by the client of the hash set, and which are provided by the library
itself. Clearly, the library should determine the type of hashsets:

/* library side types */
typedef hset;

That is really the only type provided by the implementation. In addition,
the library interface is supposed to provide a few functions:

/* library side functions */
hset hset_new(int capacity)
/*@requires capacity > 0; @*/ ;

int hset_size(hset H); /* 0(1) */

elem hset_lookup(hset H, elem x) /* 0(1) avg. */
/*@requires x !'= NULL; @*/ ;

void hset_insert(hset H, elem x) /* 0(1) avg. */
/*@requires x !'= NULL; @*/ ;

The function hset_new(int capacity) takes the initial capacity of the hash
table as an argument (which must be strictly positive) and returns a new
hash set without any elements.

The function hset_lookup(ht H, elem x), works as described in the
previous section: we pass the lookup function an element x, and it returns
to us an equivalent element, if an equivalent element already exists in the
set.

From these decisions we can see that the client must provide the type of
elements. Only the client can know what these might be in any particular
use of the library. In addition, we observe that NULL must be a value of type
elem, so that elem must be a pointer.

/* client-side types */
typedef _* elem;

Does the client also need to provide any functions? Yes! The hash ta-
ble implementation needs functions that can operate on values of the types
elem so that it can hash elements and so that it can determine whether they
are equal. Since the library is supposed to be generic, the library imple-
menter cannot write these functions; we require the client to provide them.

There are two of these “client-side” functions. First, and most obvi-
ously, we need a hash function which maps keys to integers.

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.5

/* client-side functions */
int elem_hash(elem x) /*@requires x != NULL @%/;

The result, the hash value, can be any integer, so our hash table implementa-
tion will have to take both this arbitrary integer and m, the size of the hash
table’s table, into consideration when figuring out which index of the ta-
ble the element hashes to. For the hash table implementation to achieve its
advertised (average-case) asymptotic complexity, the hash function should
have the property that its results are evenly distributed between 0 and m.
Interestingly, the implementation will work correctly (albeit slowly) even if
it maps every key to 0.

Hash table operations also need to be able to check for equivalence of
elements in order to be able to tell whether two objects that collide are ac-
tually the same or not.

/* client-side functions */
key elem_equal(elem x, elem y)
/*@requires x != NULL && y !'= NULL; @%/ ;

This completes the interface which we now summarize.

/33K 3k sk ok ok sk ok ok sk ok ok 3k ok ok 3k ok ok 3k ok ok sk ok ok %k /
/* client-side interface */
/33K 3k sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok 3k ok ok sk ok ok k /

typedef _* elem;

int elem_hash(elem x) /*@requires x != NULL; @*/ ;
int elem_equal(elem x, elem y)
/*@requires x != NULL && y '= NULL; @*/ ;

[F KKK A A A A KKK KKK [
/* library side interface */
[KKK A A KA KKK K K [

typedef _ hset;

hset hset_new(int capacity) /*@requires capacity > 0; @x*/ ;

int ht_size(ht H); /* 0(1) =/

void ht_stats(ht H); /* 0(1) =/

elem hset_lookup(hset H, elem x) /* 0(1) avg. */
/*@requires x !'= NULL; @*/ ;

void hset_insert(hset H, elem x) /* 0(1) avg. */
/*Q@requires x != NULL; @x/ ;

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.6

The function ht_size reports the total number of elements in the array
(remember that the load factor is the size n divided by the capacity m). The
function ht_stats has no effect, but prints out a histogram reporting how
many chains in the hash table are empty, how many have length 1, how
many have length 2, and so on. For a hash table to have good performance,
chains should be generally short.

5 A Tiny Client

One sample application is to count word occurrences — say, in a corpus of
Twitter data or in the collected works of Shakespeare. In this application,
the keys are the words, represented as strings. Data elements are pairs of
words and word counts, the latter represented as integers.

/AR KKK KKk Kok KK ok KKKk KKk Kok Kk ok /
/* client-side implementation */
[AF AR AR KKk Kok KK ok KKKk KoKk Kok Kk ok /
struct wcount {

string word;

int count;

s
typedef struct wcount* elem;

int elem_hash(elem x)
//@requires x !'= NULL;
{
return hash_string(x->word) ; /* from hash-string.cO */

3

bool elem_equal(elem x1, elem x2)
//Q@requires x1 != NULL && x2 != NULL;
{

return string_equal (x1->word, x2->word);

}

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.7

6 A Universal Hash Function

One question we have to answer is how to hash strings, that is, how to map
strings to integers so that the integers are evenly distributed no matter how
the input strings are distributed.
We can get access to the individual characters in a string with the string_charat (s, 1)
function, and we can get the integer ASCII value of a char with the char_ord(c)
function; both of these are defined in the CO string library. Therefore, our
general picture of hashing strings looks like this:

int hash_string(string s) {

int len = string_length(s);

int h = 0;

for (int i = 0; i < len; i++)

//@loop_invariant 0 <= i;

{
int ch = char_ord(string_charat(s, 1i));
// Do something to combine h and ch

}

return h;

}

Now, if we don’t add anything to replace the comment, the function above
will still allow the hash table to work correctly, it will just be very slow
because the hash value of every string will be zero.

A slightly better idea is combining h and ch with addition or multipli-
cation:

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;
{
int ch = char_ord(string_charat(s, 1));
h =h + ch;
}

This is still pretty bad, however. We can see how bad by running entering
the n = 45, 600 news vocabulary words from Homework 2 into a table with
m = 22,800 chains (load factor is 2) and running ht_stats:

Hash table distribution: how many chains have size...
..0: 21217
.1 239

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.8

132
78
73
55
60
46
42
23
...10+: 835
Longest chain: 176

© 0N TS W

Most of the chains are empty, and many of the chains are very, very long.
One problem is that most strings are likely to have very small hash values
when we use this hash function. An even bigger problem is that rearrang-
ing the letters in a string will always produce another string with the same
hash value — so we know that "cab" and "abc" will always collide in a
hash table. Hash collisions are inevitable, but when we can easily predict
that two strings have the same hash value, we should be suspicious that
something is wrong.

To address this, we can manipulate the value h in some way before we
combine it with the current value. Some versions of Java use this as their
default string hashing function.

for (int 1 = 0; i < len; i++)
//@loop_invariant 0 <= i;

{
int ch = char_ord(string_charat(s, 1));
h = 31x%h;
h =h + ch;

}

This does much better when we add all the news vocabulary strings into
the hash table:

Hash table distribution: how many chains have size...
..0: 3057

6210

6139

4084

2151

809

O W N e

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.9

..6: 271
LT 53
..8: 21
..9: 4
.10+: 1

Longest chain: 10

We can try adding a bit of randomness into this function in a number
of different ways. For instance, instead of multiplying by 31, we could
multiply by a number generated by the pseudo-random number generator
from C0’s library:

rand_t r = init_rand(0x1337BEEF) ;
for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;

{
int ch = char_ord(string_charat(s, 1));
h = rand(r) * h;
h =h + ch;

}

If we look at the performance of this function, it is comparable to the Java
hash function, though it is not actually quite as good — more of the chains
are empty, and more are longer.

Hash table distribution: how many chains have size...
..0: 3796

6214

5424

3589

2101

1006

455

145

48

15

co 10+ 7

Longest chain: 11

© 0N O WN

Many other variants are possible; for instance, we could try directly
applying the linear congruential generator to the hash value at every step:

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.10

for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i;

{
int ch = char_ord(string_charat(s, 1));
h = 1664525 * h + 1013904223;
h =h + ch;

}

The key goals are that we want a hash function that is very quick to com-
pute and that nevertheless achieves good distribution across our hash ta-
ble. Handwritten hash functions often do not work well, which can signifi-
cantly affect the performance of the hash table. Whenever possible, the use
of randomness can help to avoid any systematic bias.

7 A Fixed-Size Implementation of Hash Tables

The implementation of hash tables we wrote in lecture did not adjust their
size. This requires that we can a priori predict a good size, or we will not
be able to get the advertised O(1) average time complexity. Choose the size
too large and it wastes space and slows the program down due to a lack of
locality. Choose the size too small and the load factor will be high, leading
to poor asymptotic (and practical) running time.

We start with the type of lists to represent the chains of elements, and
the hash table type itself.

/oo ook ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok /

/* library-side implementation */

/ Fk koo ok /

struct chain_node {
elem data; /* data !'= NULL */
struct chain_node* next;

};

typedef struct chain_node chain;

struct ht_header {

int size; /* size >= 0 %/
int capacity; /* capacity > 0 */
chain*[] table; /* \length(table) == capacity */

};

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.11

The first thing after the definition of a data structure is a function to
verify its invariants. Besides the invariants noted above we should check
that each data value in each chain in the hash table should be non-null and
the hash value of the key of every element in each chain stored in A[7] is
indeed i. (This is_ht function is incomplete.)

bool is_hset(hset H) {
return H != NULL
&& H->capacity > O
&& H->size >= 0
&& is_table_expected_length(H->table, H->capacity);
/* && each element is non-null */
/* && there aren’t equivalent elements */
/* && the number of elements matches the size */
/* && every element in H->table[i] hashes to i */
}

Recall that the test on the length of the array must be inside an annotation,
because the \length function is not available when the code is compiled
without dynamic checking enabled.

In order to check that the elements of a hash set hash to the correct
index, we need a way of mapping the hash value returned by elem_hash to
an index of the table. This is a common enough operation that we’ll write
a helper function:

int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//Q@ensures 0 <= \result && \result < H->capacity;
{

return abs(elem_hash(x) ¥ H->capacity);

b
Allocating a hash table is straightforward.

hset hset_new(int capacity)
//@requires capacity > 0;
//Q@ensures is_hset(\result);
{
hset H = alloc(struct hset_header);
H->size = 0;

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.12

H->capacity = capacity;
H->table = alloc_array(chain*, capacity);
return H;

}

Equally straightforward is searching for an element with a given key. We
omit an additional loop invariant and add an assertion that should follow
from it instead.

elem hset_lookup(hset H, elem x)
//Qrequires is_hset(H);
//@requires x != NULL;
{
int i = elemhash(H, x);
for (chain* p = H->table[i]; p != NULL; p = p->next) {
//@assert p->data != NULL;
if (elem_equal(p->data, x)) {
return p->data;
}
}

return NULL;
}

We can extract the key from the element 1->data because the data can not
be null in a valid hash table. (Think: how would we phrase this as a loop
invariant?)

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.13

Inserting an element follows generally the same structure as search. If
we find an element in the right chain with the same key we replace it. If we
find none, we insert a new one at the beginning of the chain.

void hset_insert(hset H, elem x)
//@requires is_hset(H);
//@requires x != NULL;
//Q@ensures is_hset(H);
//Qensures x == hset_lookup(H, x);
{
int i = elemhash(H, x);
for (chain* p = H->table[i]; p != NULL; p = p->next)
// loop_invariant: p points to a chain (no NULL data)
{
//@assert p->data != NULL;
if (elem_equal(p->data, x)) {
p—>data = x;
return;
}
}

// prepend new element
chain* p = alloc(chain);
p—>data = x;

p—>next = H->table[i];
H->table[i] = p;
(H->size)++;

LECTURE NOTES OCTOBER 14, 2014

Interfaces L14.14

Exercises

Exercise 1 Extend the hash table implementation so it dynamically resizes itself
when the load factor exceeds a certain threshold. When doubling the size of the
hash table you will need to explicitly insert every element from the old hash table
into the new one, because the result of hashing depends on the size of the hash table.

Exercise 2 Redo the library implementation for a different client interface that
has a function elem_hash(key k, int m) that returns a result between 0 (in-
clusive) and m (exclusive).

Exercise 3 Extend the hash table interface with new function ht_tabulate that
returns an array with the elements in the hash table, in some arbitrary order.

Exercise 4 Extend the hash table interface with a new function to delete an ele-
ment with a given key from the table. To be extra ambitious, shrink the size of the
hash table once the load factor drops below some minimum, similarly to the way
we could grow and shrink unbounded arrays.

LECTURE NOTES OCTOBER 14, 2014

	Introduction
	Generic Data Structures
	Generic Sets and Dictionaries
	Generic Hash Sets
	A Tiny Client
	A Universal Hash Function
	A Fixed-Size Implementation of Hash Tables

