
Lecture Notes on
Stacks & Queues

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer, Rob Simmons

Lecture 10
September 25, 2014

1 Introduction

In this lecture we introduce queues and stacks as data structures, e.g., for
managing tasks. They follow similar principles of organizing the data.
Each provides simple functions for adding and removing elements. But
they differ in terms of the order in which the elements are removed. They
can be implemented easily as an abstract data type in C0, like the abstract
arr type of arrays that we discussed in the previous lectures). Today we
will not talk about the implementation of arrays; we will implement them
in the next lecture.

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by consid-
ering new data structures from the client side.

Algorithms and Data Structures: Queues and stacks are two important data
structure to understand.

Programming: Use and design of interfaces.

2 The Stack Interface

Stacks are data structures that allow us to insert and remove items. They
operate like a stack of papers or books on our desk - we add new things to
the top of the stack to make the stack bigger, and remove items from the top
as well to make the stack smaller. This makes stacks a LIFO (Last In First

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.2

Out) data structure – the data we have put in last is what we will get out
first.

Before we consider the implementation of a data structure it is helpful
to consider the interface. We then program against the specified interface.
Based on the description above, we require the following functions:

bool stack_empty(stack S); /* O(1), check if stack empty */

stack stack_new(); /* O(1), create new empty stack */

void push(stack S, string e); /* O(1), add item on top of stack */

string pop(stack S) /* O(1), remove item from top */

/*@requires !stack_empty(S); @*/ ;

We want the creation of a new (empty) stack as well as pushing and pop-
ping an item all to be constant-time operations, as indicated by O(1). Fur-
thermore, pop is only possible on non-empty stacks. This is a fundamental
aspect of the interface to a stack, that a client can only read data from a
non-empty stack. So we include this as a requires contract in the interface.

One thing to observe is that there’s nothing special about the string

type here. It would be nice to have a data structure that was generic, and
able to work with strings, integers, arrays, and so on, but we will discuss
that possibility later.

3 Using the Stack Interface

We play through some simple examples to illustrate the idea of a stack and
how to use the interface above. We write a stack as

x1, x2, . . . , xn

where x1 is the bottom of the stack and xn is the top of the stack. We push
elements on the top and also pop them from the top. If we’re feeling artis-
tic, we can draw stacks with arrows to emphasize that we’re pushing and
popping from the top:

x1, x2, … xn-1, xn	



LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.3

Here is a more complex example, showing the effect of several steps
on the state of assignable variables and allocated memory, where the stack
data structure resides:

"hello", "you" x	
   S	
  

"hello" x	
   "you" S	
  

"hello" x	
   S	
  

x	
   S	
  

x	
   S	
  
stack S = stack_new(); 

push(S, "hello"); 

push(S, "you"); 

string x = pop(S); 

Command	
   Assignable	
  Variables	
   Allocated	
  memory	
  

push(S, "Ada"); 

"hello", "Ada" x	
   "you" S	
  
x = pop(S); 

"hello" x	
   "Ada" S	
  

Remember that we think of the assignable S like a pointer or an array: it
is not literally an arrow but a number representing the address of the in-
memory representation of the stack.

4 Abstraction

An important point about formulating a precise interface to a data structure
like a stack is to achieve abstraction. This means that as a client of the data
structure we can only use the functions in the interface. In particular, we
are not permitted to use or even know about details of the implementation
of stacks.

Let’s consider an example of a client-side program. We would like to
examine the element at the top of the stack without removing it from the
stack. Such a function would have the declaration

string peek(stack S)

//@requires !stack_empty(S);

;

If we knew how stacks were implemented, we might be able to implement,
as clients of the stack data structure, something like this:

string peek(stack S)

//@requires !stack_empty(S);

{

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.4

return S->data[S->top];

}

However, this would be completely wrong. As clients of the stack data struc-
ture, we only know about the functions provided by the interface. How-
ever, it is possible to implement the peek operation correctly without violat-
ing the abstraction!

The idea is that we pop the top element off the stack, remember it in a
temporary variable, and then push it back onto the stack before we return.

string peek(stack S)

//@requires !stack_empty(S);

{

string x = pop(S);

push(S, x);

return x;

}

Depending on the implementation of stacks, this might be less efficient
than a library-side implementation of peek. However, as long as push and
pop are still a constant-time operations, peek will still be constant time
(O(1)).

5 Computing the Size of a Stack

Let’s exercise our data structure once more by developing two implemen-
tations of a function that returns the size of a stack: one on the client’s side,
using only the interface, and one on the library’s side, exploiting the data
representation. Let’s first consider a client-side implementation, using only
the interface so far.

int stack_size(stack S);

We encourage you to consider this problem and program it before you read
on.

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.5

First we reassure ourselves that it will not be a simple operation. We
do not have access to the array (in fact, as the client, we cannot know that
there is an array), so the only thing we can do is pop all the elements off the
stack. This can be accomplished with a while-loop that finishes as soon as
the stack is empty.

int stack_size(stack S) {

int count = 0;

while (!stack_empty(S)) {

pop(S);

count++;

}

return count;

}

However, this function has a big problem: in order to compute the size
we have to destroy the stack! Clearly, there may be situations where we
would like to know the number of elements in a stack without deleting all
of its elements. Fortunately, we can use the idea from the peek function in
amplified form: we maintain a new temporary stack T to hold the elements
we pop from S. Once we are done counting, we push them back onto S to
repair the damage.

int stack_size(stack S) {

stack T = stack_new();

int count = 0;

while (!stack_empty(S)) {

push(T, pop(S));

count++;

}

while (!stack_empty(T)) {

push(S, pop(T));

}

return count;

}

The complexity of this function is clearly O(n), where n is the number of
elements in the stack S, since we traverse each while loop n times, and
perform a constant number of operations in the body of both loops. For
that, we need to know that push and pop are constant time (O(1)).

A library-side implementation of stack_size can be done in O(1), but
we won’t consider that today.

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.6

6 The Queue Interface

A queue is a data structure where we add elements at the back and remove
elements from the front. In that way a queue is like “waiting in line”: the
first one to be added to the queue will be the first one to be removed from
the queue. This is also called a FIFO (First In First Out) data structure.
Queues are common in many applications. For example, when we read a
book from a file as in Assignment 2, it would be natural to store the words
in a queue so that when we are finished reading the file the words are in the
order they appear in the book. Another common example are buffers for
network communication that temporarily store packets of data arriving on
a network port. Generally speaking, we want to process them in the order
that they arrive.

Here is our interface:

/* type elem must be defined */

bool queue_empty(queue Q); /* O(1), check if queue is empty */

queue queue_new(); /* O(1), create new empty queue */

void enq(queue Q, string s); /* O(1), add item at back */

string deq(queue Q) /* O(1), remove item from front */

//@requires !queue_empty(Q);

;

Dequeuing is only possible on non-empty queues, which we indicate by a
requires contract in the interface.

Again, we can write out this interface without committing to an imple-
mentation of queues. In particular, the type queue remains abstract in the
sense that we have not given its definition. This is important so that differ-
ent implementations of the functions in this interface can choose different
representations. Clients of this data structure should not care about the in-
ternals of the implementation. In fact, they should not be allowed to access
them at all and operate on queues only through the functions in this inter-
face. Some languages with strong module systems enforce such abstraction
rigorously. In C, it is mostly a matter of adhering to conventions.

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.7

7 Using the Queue Interface

We play through some simple examples to illustrate the idea of a queue
and how to use the interface above. We write a queue as

x1, x2, . . . , xn

where x1 is the front of the queue and xn is the back of the queue. We en-
queue elements in the back and dequeue them from the front. If we want to
emphasize this, we can draw queues like this:

x1, x2, … xn-1, xn	



Here’s a trace of the queues in action:

x	
   S	
  

x	
   S	
  
queue Q = queue_new(); 

enq(Q, "oh"); 

enq(Q, "hi"); 

string x = deq(Q); 

Command	
   Assignable	
  Variables	
   Allocated	
  memory	
  

"oh" x	
   S	
  

"oh", "hi" x	
   S	
  

"hi" x	
   "oh" S	
  

"hi", "there" x	
   "oh" S	
  

"there" x	
   "hi" S	
  

enq(Q, "there"); 

x = deq(Q); 

8 Copying a Queue Using Its Interface

Suppose we have a queue Q and want to obtain a copy of it. That is, we
want to create a new queue C and implement an algorithm that will make
sure that Q and C have the same elements and in the same order. How can
we do that? Before you read on, see if you can figure it out for yourself.

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.8

The first thing to note is that

queue C = Q;

will not have the effect of copying the queue Q into a new queue C. Just
as for the case of stacks, this assignment makes C and Q aliases, so if we
change one of the two, for example enqueue an element into C, then the
other queue will have changed as well. Just as for the case of stacks, we
need to implement a function for copying the data.

The queue interface provides functions that allow us to dequeue data
from the queue, which we can do as long as the queue is not empty. So we
create a new queue C. Then we read all data from queue Q and put it into
the new queue C.

queue C = queue_new();

while (!queue_empty(Q)) {

enq(C, deq(Q));

}

//@assert queue_empty(Q);

Now the new queue C will contain all data that was previously in Q, so C
is a copy of what used to be in Q. But there is a problem with this approach.
Before you read on, can you find out which problem?

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.9

Queue C now is a copy of what used to be in Q before we started copy-
ing. But our copying process was destructive! By dequeueing all elements
from Q to put them into C, Q has now become empty. In fact, our assertion
at the end of the above loop even indicated queue_empty(Q). So what we
need to do is put all data back into Q when we are done copying it all into
C. But where do we get it from? We could read it from the copy C to put
it back into Q, but, after that, the copy C would be empty, so we are back
to where we started from. Can you figure out how to copy all data into C
and make sure that it also ends up in Q? Before you read on, try to find a
solution for yourself.

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.10

We could try to enqueue all data that we have read from Q back into Q
before putting it into C.

queue C = queue_new();

while (!queue_empty(Q)) {

string s = deq(Q);

enq(Q, s);

enq(C, s);

}

//@assert queue_empty(Q);

But there is something very fundamentally wrong with this idea. Can you
figure it out?

LECTURE NOTES SEPTEMBER 25, 2014



Stacks & Queues L10.11

The problem with the above attempt is that the loop will never termi-
nate unless Q is empty to begin with. For every element that the loop body
dequeues from Q, it enqueues one element back into Q. That way, Q will
always have the same number of elements and will never become empty.
Therefore, we must go back to our original strategy and first read all ele-
ments from Q. But instead of putting them into C, we will put them into a
third queue T for temporary storage. Then we will read all elements from
the temporary storage T and enqueue them into both the copy C and back
into the original queue Q. At the end of this process, the temporary queue
T will be empty, which is fine, because we will not need it any longer. But
both the copy C and the original queue Q will be replenished with all the
elements that Q had originally. And C will be a copy of Q.

queue queue_copy(queue Q) {

queue T = queue_new();

while (!queue_empty(Q)) {

enq(T, deq(Q));

}

//@assert queue_empty(Q);

queue C = queue_new();

while (!queue_empty(T)) {

string s = deq(T);

enq(Q, s);

enq(C, s);

}

//@assert queue_empty(T);

return C;

}

For example, when queue_copy returns, neither C nor Q will be empty.
Except if Q was empty to begin with, in which case both C and Q will still
be empty in the end.

LECTURE NOTES SEPTEMBER 25, 2014


