
Lecture Notes on
Data Structures

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer, Rob Simmons

Lecture 9
September 23, 2014

1 Introduction

In this lecture we introduce the idea of imperative data structures. So far, the
only interfaces we’ve used carefully are pixels and string bundles. Both of
these interfaces had the property that, once we created a pixel or a string
bundle, we weren’t interested in changing its contents. In this lecture, we’ll
talk about an interface that mimics the arrays that are primitively available
in C0.

To implement this interface, we’ll need to round out our discussion of
types in C0 by discussing pointers and structs, two great tastes that go great
together. We will discuss using contracts to ensure that pointer accesses
are safe, as well as the use of linked lists to implement the stack and queue
interfaces that were introduced last time. The linked list implementation of
stacks and queues allows us to handle lists of any length.

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by con-
sidering both the client-side and library-side of the interface to a data
structure.

Algorithms and Data Structures: The abstract arrays will be one of our
first examples of abstract datatypes.

Programming: Introduction of structs and pointers, use and design of in-
terfaces.

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.2

2 Structs

So far in this course, we’ve worked with five different C0 types – int, bool,
char, string, and arrays t[] (there is a array type t[] for every type t).
The character, string, Boolean, and integer values that we manipulate, store
locally, and pass to functions are just the values themselves; the picture we
work with looks like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

When we consider arrays, the things we store in assignable variables or
pass to functions are addresses, references to the place where the data stored
in the array can be accessed. An array allows us to store and access some
number of values of the same type (which we reference as A[0], A[1], and
so on.

The next data structure we will consider is the struct. A struct can be
used to aggregate together different types of data, which helps us to create
data structures. In contrast, an array is an aggregate of elements of the same
type.

Structs must be explicitly declared in order to define their “shape”. For
example, if we think of an image, we want to store an array of pixels along-
side the width and height of the image, and a struct allows us to do that:

typedef int pixel;

struct img_header {

pixel[] data;

int width;

int height;

};

Here data , width , and height are fields of the struct. The declaration
expresses that every image has an array of data as well as a width and a
height . This description is incomplete, as there are some missing consis-
tency checks – we would expect the length of data to be equal to the width
times the height , for instance, but we can capture such properties in a sep-
arate data structure invariant.

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.3

Structs do not necessarily fit into a machine word because they can
have arbitrarily many components, so they must be allocated on the heap
(in memory, just like arrays). This is true even if they happen to be small
enough to fit into a word (in order to maintain a uniform and simple lan-
guage implementation).

% coin structdemo.c0

C0 interpreter (coin) 0.3.2 ’Nickel’

Type ‘#help’ for help or ‘#quit’ to exit.

--> struct img_header IMG;

<stdio>:1.1-1.22:error:type struct img_header not small

[Hint: cannot pass or store structs in variables directly; use

pointers]

How, then, do we manipulate structs? We use the same solution as
for arrays: we manipulate them via their address in memory. Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_header* IMG = alloc(struct img_header);

IMG is 0xFFAFFF20 (struct img_header*)

We can access the fields of a struct, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;

(default empty int[] with 0 elements)

--> IMG->width;

0 (int)

--> IMG->height;

0 (int)

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.4

We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel, 2);

IMG->data is 0xFFAFC130 (int[] with 2 elements)

--> IMG->width = 1;

IMG->width is 1 (int)

--> (*IMG).height = 2;

(*(IMG)).height is 2 (int)

--> IMG->data[0] = 0xFF00FF00;

IMG->data[0] is -16711936 (int)

--> IMG->data[1] = 0xFFFF0000;

IMG->data[1] is -65536 (int)

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then .f selects the field f. We
will rarely use this dot-notation (*p).f in this course, preferring the arrow-
notation p->f.

An updated picture of memory, taking into account the initialization
above, looks like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

struct	
  img_header*	
  IMG	
   1	
   2	
  

data	
   width	
   height	
  

0xFF00FF00	
   0xFFFF0000	
  

0	
   1	
   2	
  

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.5

3 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been allocated on the heap. In can also be used more gener-
ally to refer to an element of arbitrary type that has been allocated on the
heap. For example:

--> int* ptr1 = alloc(int);

ptr1 is 0xFFAFC120 (int*)

--> *ptr1 = 16;

*(ptr1) is 16 (int)

--> *ptr1;

16 (int)

In this case we refer to the value using the notation *p, either to read (when
we use it inside an expression) or to write (if we use it on the left-hand side
of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

--> int* ptr2 = NULL;

ptr2 is NULL (int*)

--> *ptr2;

Error: null pointer was accessed

Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

struct	
  img_header*	
  IMG	
  

int*	
  ptr1	
  

int*	
  ptr2	
  
16	
  

1	
   2	
  

data	
   width	
   height	
  

0xFF00FF00	
   0xFFFF0000	
  

0	
   1	
   2	
  

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.6

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with
alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In C0,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p->f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.

4 Creating an interface

For roughly the next ten lectures – almost until the second midterm – the
lectures for this class will focus on building, analyzing, and using different
data structures. When we’re thinking about implementing data structures,
we will almost always use pointers to structs as the core of our implemen-
tation.

We’ve also seen two kinds of interfaces in our programming assign-
ment: the pixels interface in the early programming assignments, and the
string bundle interface in the DosLingos programming assignment. For
this lecture, we will work through an intellectual exercise: what if C0 did
not provide arrays (we’ll limit ourselves to arrays of strings) as a primitive
type in C0? If we wanted to use something like strings, we’d have to intro-
duce them from scratch as an abstract type, like pixels or string bundles.

If C0 didn’t have built-in, primitive support for arrays, how might we
introduce an equivalent type? The primitive operations that C0 provides
on string arrays are the ability to create a new array, to get a particular index
of an array, and to set a particular index in an array. We could capture these
as three functions that act on an abstract type arr:

typedef _______ arr;

arr arr_new(int limit); // alloc_array(string, limit)

string arr_get(arr A, int i); // A[i]

void arr_set(arr A, int i, string x); // A[i] = x

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.7

But this is not a complete picture! An interface needs to also capture the
preconditions necessary for using that abstract type safely. For instance, we
know that safety of array access requires that we only create non-negative-
length arrays and we never try to access a negative element of an array:

arr arr_new(int limit) /*@requires limit >= 0 @*/ ;

string arr_get(arr A, int i) /*@requires 0 <= i; @*/ ;

This still isn’t enough: our contracts need to ensure an upper bound so that
we don’t access the element at index 100 of a length-12 array. We don’t have
the primitive \length() method, as those are a primitive for C0 arrays, not
our new arr type. So we need an additional function in our interface to get
the length, and we’ll use that in our contracts:

typedef _______ arr;

int arr_len(arr A);

string arr_get(arr A, int i)

/*@requires 0 <= i && i < arr_len(A); @*/ ;

void arr_set(arr A, int i, string x)

/*@requires 0 <= i && i < arr_len(A); @*/ ;

arr arr_new(int limit)

/*@requires limit >= 0 @*/

/*@ensures arr_len(\result) == limit @*/ ;

Now the contracts for our array interface match the C0 array primitives,
and the contracts match the safety requirements on arrays. One exception
is that, while the C0 primitive \length(A) is restricted to contracts, we can
use the arr_len(arr A) function anywhere in our code.1

5 The Library Perspective

When we implement the library for arr, we will declare the arr type to
be a pointer to a struct arr_header, which has a limit field to hold the
length and a data field to hold the actual array.

1Thanks to Jamie Crawford for finishing this initally unfinished sentence.

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.8

struct arr_header {

int limit;

string[] data;

};

Using this knowledge, we can begin to implement the array interface from
the library side, though we immediately run into safety issues.

int arr_len(arr A) {

return A->limit;

}

How do we know that this dereference of the pointer A is safe? We don’t!
We could add the precondition A != NULL. But that won’t allow us to safely
access arr_get:

string arr_get(arr A, int i)

//@requires 0 <= i && i < arr_len(A);

{

return A->data[i];

}

We obviously need to require that A != NULL, but we also need to know
that the array access A->data[i] is not accessing the array out-of-bounds!
Because the user’s precondition was in terms of arr_len(A), it would suf-
fice to know that that function returns the true length. In other words,
we need for arr_len to /*@ensure \result == \length(A->data); *@/.
But how do we know that about arr_len? Again, we don’t, unless it’s a
requirement.

The user, remember, didn’t need to know anything about this, because
they were ignorant about the internal implementation details of the arr

type. As long as the user respects the interface, only creating arrs with
arr_new and only manipulating them with arr_len, arr_get, and arr_set,
they should be able to expect that the contracts on the interface are suffi-
cient to ensure safety. But we don’t have this luxury from the library per-
spective: all the functions in the library’s implementation are going to de-
pend on all the parts of the data structure making sense with respect to all
the other parts. We’ll capture this notion in a new kind of invariant, a data
structure invariant.

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.9

6 Data Structure Invariants

We can apply operational reasoning as library designers to say that, be-
cause the limit field of an arr is set correctly by arr_new, it must remain
correct throughout all calls to arr_get and arr_set. But, as with opera-
tional reasoning about loops, this is an error-prone way of thinking about
our data structures. Our solution in this case will be to capture what we
know about the well-formedness of an array in an invariant; we expect that
any arr being handled by the user will satisfy this data structure invariant.

The invariants of arrays are pretty simple: a arr is well-formed if it is a
non-NULL pointer to a struct where \length(AH->data) == AH->limit. If
we try to turn this into a mathematical statement, we get is_arr:

bool is_arr(struct arr_header* AH) {

return AH != NULL

&& is_arr_expected_length(AH->data, AH->limit);

}

While we would like is_arr_expected_length to be a function that re-
turns true when the given array has the expected length and false other-
wise, the restriction of length-checking to contracts makes this impossible
to write in C0. In this one case, we’ll allow ourselves to write a data struc-
ture invariant that might raise an assertion error instead of returning false:

bool is_arr_expected_length(string[] A, int length) {

//@assert \length(A) == length;

return true;

}

Whenever possible, however, we prefer data structure invariants that re-
turn true or false to data structures that raise assertion failures.

The data structure invariant, then, implies the postcondition of arr_len,
and so the function arr_get will require the data structure invariant to hold
as well, satisfying the precondition of arr_len.

int arr_len(arr A)

//@requires is_arr(A);

//@ensures \result == \length(A->data);

{

return A->limit;

}

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.10

string arr_get(arr A, int i)

//@requires is_arr(A);

//@requires 0 <= i && i < arr_len(A);

{

return A->data[i];

}

LECTURE NOTES SEPTEMBER 23, 2014



Data Structures L9.11

Functions that create new instances of the data structure should ensure
that the data structure invariants hold of their results, and functions that
modify data structures should have postconditions to ensure that none of
those data structure invariants have been violated.

arr arr_new(int limit)

//@requires 0 <= limit;

//@ensures is_arr(\result);

{

struct arr_header* AH = alloc(struct arr_header);

AH->limit = limit;

AH->data = alloc_array(string, limit);

return AH;

}

void arr_set(arr A, int i, string x)

//@requires is_arr(A);

//@requires 0 <= i && i < arr_len(A);

//@ensures is_arr(A);

//@ensures string_equal(arr_get(A, i), x);

{

A->data[i] = x;

}

Now that we have added data structure invariants, our operational reason-
ing about what it means for why arr_get was safe can be formalized as
an invariant. Any client that respects the interface will only ever get and
will only ever manipulate arrays that satisfy the data structure invariants,
so we know that the data structure invariants we’re counting on for safety
will hold at runtime.

7 Invariants Aren’t Usually Part of the Interface

When we have interfaces that hide implementations from the user, then the
data structure invariant should not be a part of the interface. Clients don’t
need to know that the internal invariants are satisfied; as long as they’re
using arr according to the interface, their invariants should be satisfied.

LECTURE NOTES SEPTEMBER 23, 2014


	Introduction
	Structs
	Pointers
	Creating an interface
	The Library Perspective
	Data Structure Invariants
	Invariants Aren't Usually Part of the Interface

