Lecture Notes on
Linear Search

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 5
September 9, 2014

1 Introduction

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search for an integer
in a sorted array to exemplify it. As a preliminary study in this lecture we
analyze linear search, which is simpler, but not nearly as efficient. Still it is
often used when the requirements for binary search are not satisfied, for
example, when we do not have the elements we have to search arranged in
a sorted array.
In term of our learning goals, we address the following:

Computational Thinking: Developing contracts (preconditions, postcon-
ditions, assertions, and loop invariants) that establish the safety and
correctness of imperative programs.

Evaluating the use of order (sorted data) as a problem-solving tool.

Identifying the difference between specification and implementation.
Algorithms and Data Structures: Describing linear search.

Programming: We will practice deliberate programming together in lectures.

Identifying, describing, and effectively using short-circuiting Boolean
operators.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.2

2 Linear Search in an Unsorted Array

If we are given an array of integers A without any further information and
have to decide if an element z is in A, we just have to search through it,
element by element. We return true as soon as we find an element that
equals z, false if no such element can be found.

bool is_in(int x, int[] A, int lower, int upper)
//@requires O <= lower && lower <= upper && upper <= \length(A);
{
for (int i = lower; i < upper; i++)
//@loop_invariant lower <= i && i <= upper;
{
if (A[i] == x) return true;
}
return false;

}

We used the statement i++ which is equivalent to i = i+1 to step through
the array, element by element.

The precondition is very common when working with arrays. We pass
an array, and we also pass bounds — typically we will let lower be 0 and
upper be the length of the array. The added flexibility of allowing lower
and upper to take other values will be useful if we want to limit search to
the first n elements of an array and do not care about the others. It will also
be useful later to express invariants such as x is not among the first k elements
of A, which we will write in code as !'is_in(x, A, 0, k) and which we
will write in mathematical notation as = ¢ A[0, k).

The loop invariant is also typical for loops over an array. We examine
every element (¢ ranges from lower to upper —1). But we will have i = upper
after the last iteration, so the loop invariant which is checked just before the
exit condition must allow for this case.

Could we strengthen the loop invariant, or write a postcondition? We
could try something like

//@loop_invariant !is_in(x, A, lower, i);

where !b is the negation of b. However, it is difficult to make sense of this
use of recursion in a contract or loop invariant so we will avoid it.

This is small illustration of the general observation that some functions
are basic specifications and are themselves not subject to further specifica-
tion. Because such basic specifications are generally very inefficient, they

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.3

are mostly used in other specifications (that is, pre- or post-conditions, loop
invariants, general assertions) rather than in code intended to be executed.

3 Sorted Arrays

A number of algorithms on arrays would like to assume that they are sorted.
Such algorithms would return a correct result only if they are actually run-
ning on a sorted array. Thus, the first thing we need to figure out is how
to specify sortedness in function specifications. The specification function
is_sorted(A,lower,upper) traverses the array A from left to right, start-
ing at lower and stopping just before reaching upper, checking that each el-
ement is smaller or equal to its right neighbor. We need to be careful about
the loop invariant to guarantee that there will be no attempt to access a
memory element out of bounds.

bool is_sorted(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
{
for (int i = lower; i < upper-1; i++)
//@loop_invariant lower <= i;
if ('(A[i] <= A[i+1])) return false;
return true;

}

The loop invariant here does not have an upper bound on i. Fortunately,
when we are inside the loop, we know the loop condition is true so we
know i < upper — 1. That together with lower < i guarantees that both
accesses are in bounds.

We could also try ¢ < upper — 1 as a loop invariant, but this turns out to
be false. It is instructive to think about why. If you cannot think of a good
reason, try to prove it carefully. Your proof should fail somewhere.

Actually, the attempted proof already fails at the initial step. If lower =
upper = 0 (which is permitted by the precondition) then it is not true that
0 = lower =i < upper —1 =0 —1 = —1. We could say ¢ < upper, but that
wouldn’t seem to serve any particular purpose here since the array accesses
are already safe.

Let’s reason through that. Why is the acccess A[i] safe? By the loop
invariant lower < ¢ and the precondition 0 < lower we have 0 < ¢, which
is the first part of safety. Secondly, we have ¢ < upper — 1 (by the loop
condition, since we are in the body of the loop) and upper < length(A)

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.4

(by the precondition), so i will be in bounds. In fact, even ¢ + 1 will be in
bounds, since 0 < lower < i < i+ 1 (since i is bounded from above) and
i+ 1< (upper — 1) +1 = upper < length(A).

Whenever you see an array access, you must have a very good reason
why the access must be in bounds. You should develop a coding instinct
where you deliberately pause every time you access an array in your code
and verify that it should be safe according to your knowledge at that point
in the program. This knowledge can be embedded in preconditions, loop
invariants, or assertions that you have verified.

4 Linear Search in a Sorted Array

Next, we want to search for an element x in an array A which we know is
sorted in ascending order. We want to return —1 if x is not in the array and
the index of the element if it is.

The pre- and postcondition as well as a first version of the function itself
are relatively easy to write.

int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,0,n);
/*Q@ensures (\result == -1 && 'is_in(x, A, 0, n))
[l (0 <= \result && \result < n) && A[\result] == x);
@x*/
{
for (int 1 = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
if (A[i] == x) return i;
return -1;

3

This does not exploit that the array is sorted. We would like to exit the
loop and return —1 as soon as we find that A[i| > z. If we haven’t found =
already, we will not find it subsequently since all elements to the right of i
will be greater or equal to A[i] and therefore strictly greater than x. But we
have to be careful: the following program has a bug.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.5

int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(4);
//@requires is_sorted(A,0,n);
/*Q@ensures (-1 == \result && 'is_in(x, A, 0, n))
[l ((0 <= \result && \result < n) && A[\result] == x);
ex*/
{
for (int i = 0; A[i] <= x && i < n; i++)
//@loop_invariant 0 <= i && i <= n;
if (A[i] == x) return i;
return -1;

3

Can you spot the problem? If you cannot spot it immediately, reason
through the loop invariant. Read on if you are confident in your answer.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.6

The problem is that the loop invariant only guarantees that 0 < i < n
before the exit condition is tested. So it is possible that i = n and the test
A[i] <= x will try access an array element out of bounds: the n elements
of A are numbered from Oton — 1.

We can solve this problem by taking advantage of the so-called short-
circuiting evaluation of the boolean operators of conjunction (“and”) && and
disjunction (“or”) | |. If we have condition el && e2 (e; and e3) then we
do not attempt to evaluate e if e; is false. This is because a conjunction
will always be false when the first conjunct is false, so the work would be
redundant.

Similarly, in a disjunction el || e2 (e; or ez) we do not evaluate ey if
e1 is true. This is because a disjunction will always be true when the first
disjunct it true, so the work would be redundant.

In our linear search program, we just swap the two conjuncts in the exit
test.

int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,O,n);
/*Q@ensures (-1 == \result && 'is_in(x, A, 0, n))
[l (0 <= \result && \result < n) && A[\result] == x);
@x*/
{
for (int 1 = 0; i < n && A[i] <= x; i++)
//@loop_invariant 0 <= i && i <= n;
if (A[i] == x) return i;
return -1;

}

Now A[i] <= x will only be evaluated if ¢ < n and the access will be in
bounds since we also know 0 < i from the loop invariant.

Alternatively, and perhaps easier to read, we can move the test into the
loop body.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.7

int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(4);
//@requires is_sorted(A,0,n);
/*Q@ensures (-1 == \result && 'is_in(x, A, 0, n))
[l ((0 <= \result && \result < n) && A[\result] == x);

ex*/
{

for (int i = 0; 1 < n; i++)

//@loop_invariant 0 <= i && i <= n;

{
if (A[i] == x) return i;
else if (A[i] > x) return -1;
}
return -1;

}

This program is not yet satisfactory, because the loop invariant does not
have enough information to prove the postcondition. We do know that if we
return directly from inside the loop, that A[i] = x and so A[\result] ==
holds. But we cannot deduce that !'is_in(x, A, 0, n) if we return —1.

Before you read on, consider which loop invariant you might add to
guarantee that. Try to reason why the fact that the exit condition must
be false and the loop invariant true is enough information to know that
'is_in(x, A, 0, n) holds.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.8

Did you try to exploit that the array is sorted? If not, then your invariant
is most likely too weak, because the function is incorrect if the array is not
sorted!

What we want to say is that all elements in A to the left of index i are smaller
than x. Just saying A[i-1] < x isn’t quite right, because when the loop is
entered the first time we have i = 0 and we would try to access A[—1]. We
again exploit shirt-circuiting evaluation, this time for disjunction.

int search(int x, int[] A, int n)
//@requires O <= n && n <= \length(A);
//Qrequires is_sorted(A,0,n);
/*Qensures (-1 == \result && 'is_in(x, A, 0, n))
|| ((0 <= \result && \result < n) && A[\result] == x);
ex/
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
//@loop_invariant i == 0 || A[i-1] < x;
{
if (A[i] == x) return i;
else if (A[i] > x) return -1;
//Q@assert A[i] < x;
}
return -1;

}

It is easy to see that this invariant is preserved. Upon loop entry, i = 0.
Before we test the exit condition, we just incremented i. We did not return
while inside the loop, so A[i — 1] # z and also A[i — 1] < x. From these two
together we have A[i — 1] < . We have added a corresponding assertion
to the program to highlight the importance of that fact.

Why does the loop invariant imply the postcondition of the function? If
we exit the loop normally, then the loop condition must be false. So i > n.
We know A[n — 1] = A[i — 1] < z. Since the array is sorted, all elements
from 0 to n — 1 are less or equal to A[n — 1] and so also strictly less than x
and x can not be in the array.

If we exit from the loop because A[i] > z, we also know that A[i —1] <
so x cannot be in the array since it is sorted.

LECTURE NOTES SEPTEMBER 9, 2014

Linear Search L5.9

5 Analyzing the Number of Operations

In the worst case, linear search goes around the loop n times, where n is the
given bound. On each iteration except the last, we perform three compar-
isons: i < n, Ali] = x and A[i] > z. Therefore, the number of comparisons
is almost exactly 3 * n in the worst case. We can express this by saying that
the running time is linear in the size of the input (n). This allows us to pre-
dict the running time pretty accurately. We run it for some reasonably large
n and measure its time. Doubling the size of the input n’ = 2 * n mean that
now we perform 3 n’ = 3% 2xn = 2x (3 *n) operations, twice as many as
for n inputs.

We will introduce more abstract measurements for the running times in
the lecture after next.

LECTURE NOTES SEPTEMBER 9, 2014

	Introduction
	Linear Search in an Unsorted Array
	Sorted Arrays
	Linear Search in a Sorted Array
	Analyzing the Number of Operations

