Loop Invariant

Def'n: A boolean condition that is true
immediately before every evaluation of the
loop guard.

It is true even if the loop runs O times (i.e. is
skipped).

It is true immediately before each evaluation
of the loop guard, including the last evaluation
if the loop terminates.

It is true immediately after the loop
terminates, if the loop terminates.



while (c)

//@loop invariant I;

{

loop body

false

J

//Q@assert P;

. P (postcondition)



1. INIT

Show that the loop
invariant I 1s true
immediately before
false the first evaluation of
the loop guard C.

. P (postcondition)



false

v

true

P (postcondition)

2. PRESERVATION
Show that 1f the loop
invariant I 1s true
immediately before
the evaluation of the
loop guard C, then

I is true immediately

before the next

evaluation of the
loop guard C.



false

v

true

P (postcondition)

3. EXIT

Once we have a
valid loop 1nvariant,
we can show that the
logical conjunction
of the loop 1nvariant
I and the negation of
the loop guard C
implies the desired
postcondition P:

["~C—>P



4. TERMINATION
Show that the loop
will always terminate
(1.e. that C must

false eventually be false).

. P (postcondition)



Reasoning with a Loop Invariant

Given a loop with a loop guard C and a
postcondition P, we can use the loop invariant |
to reason that the postcondition must follow.

* We use step 1 to reason that loop invariant | is
true immediately before first evaluation of C.



Reasoning with a Loop Invariant

* We use step 2 to reason that loop invariant |
must be true at the end of the first iteration
(since we’ve reasoned it is true at the start of
the first iteration).



Reasoning with a Loop Invariant

 Since | was true at the end of the first

iteration, it is also true at the start of the
second iteration.

 We use step 2 to reason that loop invariant |
must be true at the end of the second
iteration (since we’ve reasoned it is true at the
start of the second iteration).



Reasoning with a Loop Invariant

e Since | was true at the end of the second

iteration, it is also true at the start of the third
Iiteration.

 We use step 2 to reason that loop invariant |
must be true at the end of the third iteration
(since we’ve reasoned it is true at the start of
the third iteration).



Reasoning with a Loop Invariant

... We can reason each iteration the same way
until...

 Since | was true at the end of the next-to-last
iteration, it is also true at the start of the last
iteration.

* We use step 2 to reason that loop invariant |
must be true at the end of the last iteration
(since we’ve reasoned it is true at the start of
the last iteration).



Reasoning with a Loop Invariant

* We use step 3 to reason about what happens
when we exit the loop (step 4 ensures we will
do so eventually).

e After the last iteration, Cis now false, but |
must be true (since | was true at the end of
the last iteration).

* Once we know we have a proper loop
invariants, we can use it to show that the
conjuction of | * ~“C implies P to argue that the
desired postcondition holds.



Reasoning with a Loop Invariant

* Note that this reasoning works even if the
loop executes O times. (step 2 is vacuous)

* Note that step 2 is used to reason about
EVERY single iteration using the same logic.
Step 2 acts as a generalization so we can
reason about every execution of this loop, no
matter how many times it will run.



