
15-122 Homework 3 Page 1 of 8

15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 3

Due: Thursday, September 19, 2013 at 10pm

Name:

Andrew ID:

Recitation:

In this homework assignment, we will work with specifying and implementing search in an
array. In lecture, we worked on searching for any integer in an array. In this assignment, we
will talk about searching for the first occurrence integer in an array with duplicates.

You will use some of the functions from the arrayutil.c0 library that was discussed in
lecture in this assignment.

Question Points Score

1 5

2 4

3 4

4 2

Total: 15

You must do this assignment in one of two ways:

1) Write your answers neatly on this PDF, and then submit the

stapled printout to the handin box Thursday before lecture or on

Thursday afternoon outside of Tom Cortina’s office (GHC 4117).

2) Use the TeX template at https://whiteboard.ddt.cs.cmu.

edu/#/15122-f13/assessments/78/1 and either submit your

solutions electronically or print them out and hand them in.

http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/06-binsearch/arrayutil.c0
https://whiteboard.ddt.cs.cmu.edu/#/15122-f13/assessments/78/1
https://whiteboard.ddt.cs.cmu.edu/#/15122-f13/assessments/78/1

15-122 Homework 3 Page 2 of 8

1. Preconditions and postconditions

Here is our initial, buggy specification of search for the first occurrence of x in an array.

/* 1 */ int search(int x, int[] A, int n)

/* 2 */ //@requires 0 <= n && n <= \length(A);

/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))

/* 5 */ || (0 <= \result && \result < n

/* 6 */ && A[\result] == x

/* 7 */ && A[\result-1] < x); @*/

(a)(1) Give specific values of inputs and output such that the precondition evaluates to
true and checking the postcondition will cause an array-out-of-bounds exception.

Solution:

• x = 42

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

(b)(1) Even in cases where we don’t access an array out of bounds, the specification is
buggy because we left off an important precondition that should have appeared as
line 3: @requires is_sorted(A, 0, n).

Of course, we can perform linear search on an unsorted array, but if our array
is not necessarily sorted, line 7 doesn’t actually enforce that \result is the first
occurrence of x in the array.

Give specific values for inputs and output such that the precondition on line 2 and
the postcondition both evaluate to true but the result is not the index of the first
occurrence of x in the array. (Hint: the array A should not be sorted.)

Solution:

• x = 42

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

15-122 Homework 3 Page 3 of 8

(c)(1) Give specific values for inputs and output such that the precondition on line 2

evaluates to true, the postcondition evaluates to false, and the result is the index
of the first occurrence of x in the array. (Hint: the array A should again not be
sorted.)

Solution:

• x = 42

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

(d)(1) Edit line 7 slightly so that, if we require that the array is sorted, the postcondition
for search is safe and correct. Do not use any of the arrayutil.c0 specification
functions.

Solution:

/* 7 */

(e)(1) Edit line 7 so that whether or not we require that the array is sorted, the postcon-
dition for search is safe and correct. You’ll need to use one of the arrayutil.c0

specification functions.

Solution:

/* 7 */

http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/06-binsearch/arrayutil.c0
http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/06-binsearch/arrayutil.c0

15-122 Homework 3 Page 4 of 8

2. The loop invariant

Now that our specification is correct, we’ll move on to an also-buggy implementation.

/* 1 */ int search(int x, int[] A, int n)

/* 2 */ //@requires 0 <= n && n <= \length(A);

/* 3 */ //@requires is_sorted(A, 0, n);

/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))

/* 5 */ || (0 <= \result && \result < n

/* 6 */ && A[\result] == x

/* 7 */ /* YOUR ANSWER FOR 1(e) */); @*/

/* 8 */ {

/* 9 */ int lower = 0;

/* 10 */ int upper = n;

/* 11 */ while (lower < upper)

/* 12 */ //@loop_invariant 0 <= lower && lower <= upper && upper <= n;

/* 13 */ //@loop_invariant gt_seg(x, A, 0, lower);

/* 14 */ //@loop_invariant le_seg(x, A, upper, n);

/* 15 */ {

...

/* m-3 */ }

/* m-2 */ //@assert lower == upper;

/* m-1 */ return -1;

/* m */ }

You should assume that the missing loop body does not write to the array A or modify
the assignable variables x, A, or n.

(a)(1) Prove that the loop invariant (lines 12-14) holds initially:

Solution:

15-122 Homework 3 Page 5 of 8

(b)(1) This loop invariant does not imply the postcondition when the function exits on
line m-1! Give specific values for all variables such the precondition evaluates to
true, the loop guard evaluates to false, the loop invariants evaluate to true, and the
postcondition evaluates to false, given that \result = -1.

Solution:

• x = 42

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• lower =

• upper =

(c)(2) Modify the code after the loop so that, if the loop terminates, the postcondition
will always be true.

Take care to ensure that any array access you make is safe! You know that the
loop invariants on lines 12-14 are true, and you know that the loop guard is false
(which, together with the first loop invariant on line 12, justifies the assertion
lower == upper).

Solution:

/* Loop ends here... */

//@assert lower == upper;

if (__) {

return ___;

}

return -1;

}

15-122 Homework 3 Page 6 of 8

3. Linear search

Now we’ll fill in the loop body with code that does linear search.

/* 1 */ int search(int x, int[] A, int n)

/* 2 */ //@requires 0 <= n && n <= \length(A);

/* 3 */ //@requires is_sorted(A, 0, n);

/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))

/* 5 */ || (0 <= \result && \result < n

/* 6 */ && A[\result] == x

/* 7 */ /* YOUR ANSWER FOR 1(e) */); @*/

/* 8 */ {

/* 9 */ int lower = 0;

/* 10 */ int upper = n;

/* 11 */ while (lower < upper)

/* 12 */ //@loop_invariant 0 <= lower && lower <= upper && upper <= n;

/* 13 */ //@loop_invariant gt_seg(x, A, 0, lower);

/* 14 */ //@loop_invariant le_seg(x, A, upper, n);

/* 15 */ {

/* 16 */ if (A[lower] == x)

/* 17 */ return lower;

/* 18 */ if (A[lower] > x)

/* 19 */ return -1;

/* 20 */ //@assert A[lower] < x;

/* 21 */ lower = lower + 1;

/* 22 */ }

/* 23 */ //@assert lower == upper;

/* 24 */ return -1;

/* 25 */ }

(a)(1) Prove that this loop has to terminate. (What quantity gets smaller every time the
loop body runs?)

Solution:

15-122 Homework 3 Page 7 of 8

(b)(3) Prove that, in the case that the code returns on line 17 or 19, the postcondition on
lines 4-7 – with your modification from 1(e) – always evaluates to true.

Solution: When we start the loop, we know the following:

• 0 <= n && n <= \length(A) by the function’s precondition (line 2, A

and n are never modified by the function)

• A[0,n) sorted by the function’s precondition (line 3, A and n are never
modified by the function and A is not written to anywhere)

• lower < upper by the loop guard (line 11)

• 0 <= lower && lower <= upper && upper <= n by the first loop in-
variant (line 12)

• x > A[0, lower) by the second loop invariant (line 13)

• x <= A[upper, n) by the third loop invariant (line 14)

If we return on line 17, we also know A[lower] is x by line 16. We therefore
want to prove the second part of the postcondition:

If we return on line 19, we also know A[lower] > x by line 18. We therefore
want to prove the first part of the postcondition:

15-122 Homework 3 Page 8 of 8

4. Code revisions

(a)(1) Complete this simpler loop invariant for the code on page 6 by writing a line that
tells you something about upper. The resulting loop invariant should be true ini-
tially, should be preserved by any iteration of the loop, and should allow you to
prove the postcondition without the modifications you made in 2(c). (You don’t
have to write the proof.)

Solution:

/* 12 */ //@loop_invariant 0 <= lower && lower <= upper;

/* 13 */ //@loop_invariant gt_seg(x, A, 0, lower);

/* 14 */ //@loop_invariant

(b)(1) Here’s an alternate loop body that does perform binary search. You can use it as
a replacement for lines 15-22 on page 6:

/* 15 */ {

/* 16 */ int mid = lower + (upper-lower)/2;

/* 17 */ if (A[lower] == x) return lower;

/* 18 */ if (A[mid] < x) lower = mid+1;

/* 19 */ else { /*@assert(A[mid] >= x); @*/

/* 20 */ upper = mid;

/* 21 */ }

/* 22 */ }

Show that your answer for 4(a) above is not a loop invariant of a loop with this body.
Give specific values for all variables such that n and A satisfy the preconditions, the
loop guard lower < upper evaluates to true, and your loop invariants from 4(a)
evaluate to true before this loop body runs, but those loop invariants do not evaluate
to true after this loop body runs.

Solution:

• x = 42

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• lower =

• upper =

