
15-122 Written Homework 3 Solutions Page 1 of 4

15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 3 Partial Solutions

In this homework assignment, we will work with specifying and implementing search in an
array. In lecture, we worked on searching for any integer in an array. In this assignment, we
will talk about searching for the first occurrence integer in an array with duplicates.

You will use some of the functions from the arrayutil.c0 library that was discussed in
lecture in this assignment.

http://www.cs.cmu.edu/~rjsimmon/15122-f13/lec/06-binsearch/arrayutil.c0

15-122 Written Homework 3 Solutions Page 2 of 4

3. Linear search

Now we’ll fill in the loop body with code that does linear search.

/* 1 */ int search(int x, int[] A, int n)

/* 2 */ //@requires 0 <= n && n <= \length(A);

/* 3 */ //@requires is_sorted(A, 0, n);

/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))

/* 5 */ || (0 <= \result && \result < n

/* 6 */ && A[\result] == x

/* 7 */ /* YOUR ANSWER FOR 1(e) */); @*/

/* 8 */ {

/* 9 */ int lower = 0;

/* 10 */ int upper = n;

/* 11 */ while (lower < upper)

/* 12 */ //@loop_invariant 0 <= lower && lower <= upper && upper <= n;

/* 13 */ //@loop_invariant gt_seg(x, A, 0, lower);

/* 14 */ //@loop_invariant le_seg(x, A, upper, n);

/* 15 */ {

/* 16 */ if (A[lower] == x)

/* 17 */ return lower;

/* 18 */ if (A[lower] > x)

/* 19 */ return -1;

/* 20 */ //@assert A[lower] < x;

/* 21 */ lower = lower + 1;

/* 22 */ }

/* 23 */ //@assert lower == upper;

/* 24 */ return -1;

/* 25 */ }

(a)(1) Prove that this loop has to terminate. (What quantity gets smaller every time the
loop body runs?)

Solution: The quantity upper-lower always decreases. If it is x before the
loop body runs then it will be x− 1 after the loop body runs.

15-122 Written Homework 3 Solutions Page 3 of 4

(b)(3) Prove that, in the case that the code returns on line 17 or 19, the postcondition on
lines 4-7 – with your modification from 1(e) – always evaluates to true.

Solution: When we start the loop, we know the following:

• 0 <= n && n <= \length(A) by the function’s precondition (line 2, A

and n are never modified by the function)

• A[0,n) sorted by the function’s precondition (line 3, A and n are never
modified by the function and A is not written to anywhere)

• lower < upper by the loop guard (line 11)

• 0 <= lower && lower <= upper && upper <= n by the first loop in-
variant (line 12)

• x > A[0, lower) by the second loop invariant (line 13)

• x <= A[upper, n) by the third loop invariant (line 14)

If we return on line 17, we also know A[lower] is x by line 16. We therefore
want to prove the second part of the postcondition:

• 0 <= \result by line 17 (\result = lower) and line 12 (0 <= lower)

• \result < n by line 17 (\result = lower), line 11 (lower < upper),
and line 12 (upper <= n)

• A[\result] = x by line 17 (\result = lower) and line 16 (A[lower] =
x)

• !is_in(x, A, 0, \result) by line 17 (\result = lower) and line 13

(x > A[0, lower) implies x /∈ A[0, lower))

If we return on line 19, we also know A[lower] > x by line 18. We therefore
want to prove the first part of the postcondition:

• \result = -1 by line 19

• x /∈ A[0,lower) by line 13 (x > A[0, lower) implies x /∈ A[0, lower))

• x < A[lower] by line 18

• x < A[lower,n) by the above and line 3 (A[0,n) sorted).

• x /∈ A[lower,n) by the above

• x /∈ A[0,n) by pasting together the two segments that x is not in.

15-122 Written Homework 3 Solutions Page 4 of 4

4. Code revisions

(a)(1) Complete this simpler loop invariant for the code on page 6 by writing a line that
tells you something about upper. The resulting loop invariant should be true ini-
tially, should be preserved by any iteration of the loop, and should allow you to
prove the postcondition without the modifications you made in 2(c). (You don’t
have to write the proof.)

Solution:

/* 12 */ //@loop_invariant 0 <= lower && lower <= upper;

/* 13 */ //@loop_invariant gt_seg(x, A, 0, lower);

/* 14 */ //@loop_invariant upper == n;

(b)(1) Here’s an alternate loop body that does perform binary search. You can use it as
a replacement for lines 15-22 on page 6:

/* 15 */ {

/* 16 */ int mid = lower + (upper-lower)/2;

/* 17 */ if (A[lower] == x) return lower;

/* 18 */ if (A[mid] < x) lower = mid+1;

/* 19 */ else { /*@assert(A[mid] >= x); @*/

/* 20 */ upper = mid;

/* 21 */ }

/* 22 */ }

Show that your answer for 4(a) above is not a loop invariant of a loop with this body.
Give specific values for all variables such that n and A satisfy the preconditions, the
loop guard lower < upper evaluates to true, and your loop invariants from 4(a)
evaluate to true before this loop body runs, but those loop invariants do not evaluate
to true after this loop body runs.

Solution:

• x = 42

• A = {0, 1, 42, 42, 90}

• n = 5

• lower = 0

• upper = 5

In the loop body, mid will be set to 2. We will fail the conditionals on lines 17

and 18 because A[2] >= 42, thus after the loop runs upper will be 2, failing
the loop invariant we wrote above.

