
15-122 Written Homework 1 Page 1 of 9

15-122 : Principles of Imperative Computation, Fall 2013

Written Homework 1 Solutions

Name:

Andrew ID:

Recitation:

The theory portion of this week’s homework will introduce you to the way we reason about
C0 code in 15-122.

15-122 Written Homework 1 Page 2 of 9

2. The preservation of loop invariants

The core of proving the correctness of a function with a loop is proving that the loop
invariant is preserved – that if the loop invariant holds at the beginning of a loop, it still
holds at the end.

For each of the following loops, state whether the loop invariant is always preserved or
not. If you say that the loop invariant is always preserved, prove this. If you say that
the loop invariant is not always preserved, give initial values of the assignable variables
such that the loop guard and loop invariant will hold before the loop body executes, but
where the loop invariant will not hold after the loop body executes.

In this problem and in the next one, we will give solutions to some of the questions to
give you some idea of what we are looking for. We will give two answers: a “long form”
answer where we write out all the reasoning, and a “short form” answer where we just
give the facts that we know to be true and the line or lines that justify those facts. You
can answer questions either way; we prefer the shorter version.

(a)(0) /* 1 */ while(j < 10000)

/* 2 */ //@loop_invariant 2 * i == j;

/* 3 */ {

/* 4 */ i = i+2;

/* 5 */ j = j+4;

/* 6 */ }

Solution: The loop invariant is always preserved.

Long version: From line 1, we know that j < 10000 at the beginning of the
loop and from line 2 we know 2 * i = j at the beginning of the loop.

We use primed variables to refer to the values stored in i and j at the end of
the loop. Therefore, to show that the loop invariant is preserved, we need to
show that 2 * i’ = j’ where i’ = i+2 (line 4) and j’ = j+4 (line 5).

Therefore we have that 2 * i’ = 2 * (i+2) = 2 * (i+2) = 2*i + 4 =
2*i + 4 = j + 4 = j’, which by transitivity is what we needed to show.

Short version:

– 2 * i’ = 2 * (i+2) (line 4)
– 2 * (i+2) = 2*i + 4 (distributivity)
– 2*i + 4 = j + 4 (line 2)
– j + 4 = j’ (line 5)
– 2 * i’ = j’ (transitivity, the four preceding facts)

15-122 Written Homework 1 Page 3 of 9

(b)(2) /* 1 */ while (k <= n)

/* 2 */ //@loop_invariant i*i == k;

/* 3 */ {

/* 4 */ k = k + 2*i + 1;

/* 5 */ i = i + 1;

/* 6 */ }

Solution: The loop invariant is always preserved.

– k’ = k + 2*i + 1 (line 4)
– k + 2*i + 1 = i*i + 2*i + 1 (line 2)
– i*i + 2*i + 1 = (i + 1)*(i + 1) (math)
– (i + 1)*(i + 1) = i’*i’ (line 5)
– i’*i’ = k’ (transitivity, the last 4 facts)

(c)(2) /* 1 */ while(i < x)

/* 2 */ //@loop_invariant x <= y;

/* 3 */ //@loop_invariant i < y;

/* 4 */ {

/* 5 */ i++;

/* 6 */ }

Solution: The loop invariant is not always preserved.

Let x = y = 4, and let i = 3. After the loop runs, i will be 4 so i < y will
evaluate to false.

15-122 Written Homework 1 Page 4 of 9

(d)(2) /* 1 */ while (a != b)

/* 2 */ //@loop_invariant a > 0 && b > 0;

/* 3 */ {

/* 4 */ if (a > b) {

/* 5 */ a = a - b;

/* 6 */ } else {

/* 7 */ b = b - a;

/* 8 */ }

/* 9 */ }

Solution: The loop invariant is always preserved.

We reason by case analysis on the relationship between the integers a and b.

Case 1: (a > b)

– a’ = a - b (line 4, line 5)
– b’ = b (line 4)
– b > 0 (line 2)
– a’ > 0 (a > b) ∧ (a’ = a - b) ⇒ a’ > 0

– b’ > 0 (b > 0) ∧ (b’ = b) ⇒ b’ > 0

– a’ > 0 && b’ > 0 (previous two facts)

Case 2: (a < b)

– a’ = a (line 4)
– b’ = b - a (line 4, line 7)
– a > 0 (line 2)
– a’ > 0 (a > 0) ∧ (a’ = a) ⇒ a’ > 0

– b’ > 0 (a < b) ∧ (b’ = b - a) ⇒ b’ > 0

– a’ > 0 && b’ > 0 (previous two facts)

Case 3: (a == b)

Because we know a != b (line 1), this case is impossible.

15-122 Written Homework 1 Page 5 of 9

(e)(1) /* 1 */ while (e > 0)

/* 2 */ //@loop_invariant e > 0 || accum == POW(x,y);

/* 3 */ {

/* 4 */ accum = accum * x;

/* 5 */ e = e - 1;

/* 6 */ }

Solution: The loop invariant is not always preserved.

Lots of counterexamples here where e = 1 before the loop body runs.

Here’s one example: if x = y = accum = 3, and e = 1, then after the loop accum

= 9 and e = 0. POW(3,3) = 27 which is not 9, and 0 is not greater than 0, so
after the loop body the loop invariant does not hold.

(f)(2) /* 1 */ while(x == 2*y)

/* 2 */ //@loop_invariant i == 4*j;

/* 3 */ {

/* 4 */ i = i+2*x;

/* 5 */ j = j+y;

/* 6 */ x = f(i);

/* 7 */ }

Solution:

– i’ = i+2*x (line 4)
– i+2*x = 4*j + 2*x (line 2)
– 4*j + 2*x = 4*j + 4*y (line 1)
– 4*j + 4*y = 4*(j+y) (distributivity)
– 4*(j+y) = 4*j’ (line 5)
– i’ = 4*j’ (transitivity, the last 5 facts)

15-122 Written Homework 1 Page 6 of 9

3. Assertions in loops

This question involves a series of functions f with one loop; each contains additional
//@assert statements. None of the assertions will ever fail – they will never evaluate
to false when the function f is called with arguments that satisfy the precondition.
However, if our loop invariants aren’t up to the task, we may not be able to prove these
assertions hold.

When assignable variables are untouched by a loop, statements we know to be true
about those untouched assignables before the loop remain valid inside the loop and after
the loop. For assignables that are modified by the loop, the loop guard and the loop
invariants are the only statements we can use. Inside of a loop, we know that the loop
invariant held just before the loop guard was checked and that the loop guard returned
true. After a loop, we know that the loop invariant held just before the loop guard was
checked for the last time and that the loop guard returned false.

For each of the problems below, you can assume that the loop invariant is true initially
(before the loop guard is checked the first time) and that it is always preserved.

(a)(0) /* 1 */ int f(int a, int b)

/* 2 */ //@requires 0 <= a && a < b;

/* 3 */ {

/* 4 */ int i = 0;

/* 5 */ while (i < a) {

/* 6 */ //@assert i < b; /*** Assertion 1 ***/

/* 7 */ i += 1;

/* 8 */ }

/* 9 */ //@assert i == a; /*** Assertion 2 ***/

/* 10 */ return i;

/* 11 */ }

Solution: Assertion 1 is supported.

Long version: Because the assignables a and b are not modified by the loop,
the assertion a < b from line 2 can be used at line 6. Because we are inside the
loop, we know the loop guard held at the beginning of the loop, so line 5 gives
us that i < a. The facts i < a and a < b together imply i < b.

Short version:

– i < a (line 5)
– a < b (line 2)
– i < b (i < a) ∧ (a < b) ⇒ (i < b)

Solution: Assertion 2 is unsupported.

At line 9, we know that the loop guard i < a is false – that is, we know that
!(i < a), which is the same thing as saying i >= a. We can’t conclude, from
this, that i is equal to a.

15-122 Written Homework 1 Page 7 of 9

(b)(3) /* 1 */ int f(int a, int b)

/* 2 */ //@requires 0 <= a && a <= b;

/* 3 */ {

/* 4 */ int i = 0;

/* 5 */ while (i < a)

/* 6 */ //@loop_invariant 0 <= i;

/* 7 */ {

/* 8 */ //@assert 0 <= i && i < b; /*** Assertion 3 ***/

/* 9 */ i += 1;

/* 10 */ }

/* 11 */ //@assert i <= b; /*** Assertion 4 ***/

/* 12 */ return i;

/* 13 */ }

Solution: Assertion 3 is supported.

We have that 0 <= i from line 6.

We have i < b from lines 5 and 2 – (0 <= i) ∧ (a <= b) ⇒ i < b.

Solution: Assertion 4 is unsupported.

This just mimics Assertion 2. We know i >= a from line 5, so i is greater
than or equal to a but that doesn’t mean it’s less than b.

15-122 Written Homework 1 Page 8 of 9

(c)(3) /* 1 */ int f(int a, int b)

/* 2 */ //@requires 0 <= a && a <= b;

/* 3 */ {

/* 4 */ int i = 0;

/* 5 */ while (i < a)

/* 6 */ //@loop_invariant i <= a;

/* 7 */ {

/* 8 */ //@assert i < b; /*** Assertion 5 ***/

/* 9 */ i += 1;

/* 10 */ }

/* 11 */ //@assert i == a; /*** Assertion 6 ***/

/* 12 */ return i;

/* 13 */ }

Solution: Assertion 5 is supported.

We have i < b from lines 5 and 2 – (i < a) ∧ (a <= b) ⇒ i < b.

Solution: Assertion 6 is supported.

We have i <= a from line 6, and i >= a from line 5; together these imply that
i == a.

15-122 Written Homework 1 Page 9 of 9

(d)(3) /* 1 */ int f(int a, int b)

/* 2 */ //@requires 0 <= a && 2*a < b;

/* 3 */ {

/* 4 */ int i = 0;

/* 5 */ while (i < a) {

/* 6 */ //@assert i < b; /*** Assertion 7 ***/

/* 7 */ i += 2;

/* 8 */ a += 1;

/* 9 */ }

/* 10 */ //@assert a <= i; /*** Assertion 8 ***/

/* 11 */ return i;

/* 12 */ }

Solution: Assertion 7 is unsupported. Because a is modified by the loop, we
cannot use line 2 to reason about the relationship between i and a inside of the
loop, so we have no way of knowing the relationship between i and b.

For your perusal, a version of this loop where the loop invariants do entail
Assertion 7 follows; we have to create a new temporary variable j and use
that instead of a to preserve the old value of a while we’re inside the loop.

int f(int a, int b)

//@requires 0 <= a && 2*a < b;

{

int i = 0;

int j = a;

while (i < j)

//@loop_invariant 0 == i%2;

//@loop_invariant a == j - i/2;

{

//@assert i < b; /*** Assertion 7 ***/

i += 2;

j += 1;

}

//@assert j <= i; /*** Assertion 8 ***/

return i;

}

By the last two loop invariants, we have that 2*a == 2*j - i, and so this,
together with the precondition 2*a <= b, gives us that 2*j - i < b. Because
of the loop guard, we know that 2*j - i is greater than j, which is in turn
greater than i. So we have i < j < 2*j - i < b, which is what we needed.

Solution: Assertion 8 is supported.

The statement a <= i is just the negation of the loop guard, line 5.

