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Abstract—Despite the recent popularity of online social net-
works (OSN), little attention has been given to developing tools
that can characterize directed OSN networks. An OSN is directed
when the relationships (edges) between its vertices (users or
profiles) may not be reciprocated (or the reciprocation is not
made public). In networks where sampling vertices uniformly
at random is feasible but expensive, crawling the OSN graph
is often a cheaper sampling method. For undirected graphs
and when the cost of independent sampling is high, random
walks (a type of crawl) are known to be better alternatives to
uniform (independent) vertex sampling. However, in the presence
of hidden directed edges (e.g. the WWW and Flickr graphs only
have visible outgoing edges), there may be no known path from a
given vertex to all other vertices, which is a barrier to estimating
graph characteristics.

In this work we propose a sampling algorithm, random walk
with jumps, that estimates out-degree distributions efficiently. Our
random walker walks known edges backwards and also performs
random jumps. We also show that, when the in-degree of a vertex
is a latent variable (i.e., incoming edges are hidden, which is the
case at the Flickr social network, and private profiles at Facebook
and MySpace), any unbiased in-degree distribution estimator
needs to sample most of the hidden edges in order to obtain
accurate estimates of the in-degree distribution.

I. INTRODUCTION

Despite the recent efforts to characterize online social

networks (OSNs), little attention has been given to developing

tools that can characterize directed OSNs. An OSN is said to

be directed when the relationships between its vertices (users

or profiles) may not be reciprocated (or the reciprocation is

not made public). For instance, if a Flickr user a (Flickr, [6]

is a popular photo-sharing social network) subscribes to user’s

b photo updates it does not imply that user b also subscribes

to user’s a updates.

One of the main difficulties in sampling directed OSNs, such

as Flickr, is the presence of hidden incoming edges. An edge

b → a is hidden from user a if b → a can only be observed

by querying user b. For instance, querying user a in the Flickr

network returns only a’s subscriptions (i.e., all a’s outgoing

edges) but not a’s subscribers (i.e., none of a’s incoming

edges). Clearly, one can find a’s subscribers by querying the

subscriptions of all Flickr users, but this is not a practical

approach for large OSNs. Crawling a graph with hidden edges

is difficult. The existence of hidden incoming edges prevents

crawling the graph as there may be no (known) path from a

given vertex to all other vertices. Thus, even seemly simple

tasks such as estimating the in- and out-degree distributions

can be challenging when large directed graphs have hidden

(incoming) edges.

The above navigability issue is not restricted to Flickr.

This issue also arises in OSNs like Facebook [5] and MyS-

pace [14]. The literature often portrays Facebook and MySpace

as undirected graphs, where vertices are user profiles and edges

are “friendships” relations among profiles [5], [13], [14]. In

practice, however, user privacy settings can lead to asymmetric

disclosure of edges (friendships). For instance, a Facebook

profile a can publicly disclose its friendship with profile b
while profile b does not publicly disclose its friendship with

a [5]. The same is true with MySpace [14]. We denote a
and b public and private vertices (profiles), respectively. Thus,

Facebook and MySpace can be seen as directed graphs where

a subset of its vertices (private profiles) have hidden incoming

edges and no outgoing edges; and its remaining vertices

(public profiles) have visible incoming and outgoing edges.

Contributions

Our work makes two contributions:

1) Random Walk with Jumps: To address the above navi-

gability issue, we modify the random walk proposed by Bar-

Yossef et al. [1] and add random jumps (a jump to a randomly

chosen vertex) similar (but not equivalent) to the random

jumps performed by the PageRank [3] algorithm. We call our

algorithm random walk with jumps (RWwJ). Our algorithm,

unlike the random walk in [1] or PageRank, can be used

to estimate out-degree distributions efficiently and accurately.

RWwJ can be used over networks such as Flickr, Facebook

and MySpace, which admit random jumps. RWwJ is advanta-

geous over just randomly sampling vertices when sampling a

neighbor of a known vertex is much cheaper (resource-wise)

than performing independent uniform sampling. Moreover,

RWwJ has a jump probability parameter that allows one to

tradeoff estimation accuracy gained by jumping with the cost

of independently sampling vertices.



2) In-degree Distribution Estimation: We also present an

unbiased in-degree distribution estimator for graphs that have

hidden incoming edges. Our work answers the following

question: How much of the graph needs to be sampled in

order to obtain accurate in-degree distribution estimates? We

analyze two OSNs (Flickr and Facebook) and observe that

the answer to the above question is negative. We show that

any unbiased in-degree distribution estimator needs to sample

most of the OSN in order to obtain accurate estimates. We

also see that side information, such as knowing the fraction of

edges in the Flickr graph that are symmetric (an edge a → b
is symmetric if the graph has an edge b→ a), has little impact

on the accuracy of the estimates.

Outline

The rest of the paper is organized as follows. Section II

presents the graph model and some definitions used throughout

this work. Section III presents our random walk with jumps

algorithm and an estimator for the out-degree distribution.

Section III-D presents an out-degree distribution estimator

using the samples obtained in the random walk. Section IV

shows that, for OSN graphs with hidden incoming edges,

it is necessary to sample most of the graph edges in order

to accurately estimate the in-degree distribution. Section V

reviews the related work. Finally, Section VI presents our

conclusions and future work.

II. DEFINITIONS AND PROBLEM FORMULATION

Let Gd = (V,Ed) be a directed graph, where V is the set

of vertices and Ed is the set of edges. Let o(v) denote the

number of edges to vertex v ∈ V (out-degree) and i(v) denote
the number of edges from vertex v ∈ V (in-degree). We seek

to obtain both the out-degree distribution φ = (φ0, φ1, ..., φR)
and the in-degree distribution θ = (θ0, θ1, ..., θW ), where φl

is the fraction of vertices with out-degree l, θj is the fraction

of vertices with in-degree j, R is the largest out-degree, and

W is the largest in-degree.

The degree distribution of a large undirected graph can be

estimated using random walks (RW) [8], [13], [15]. But these

RW methods cannot be readily applied to directed graphs with

hidden incoming edges, the case of a number of interesting

directed networks, e.g., the WWW and Flickr.

To address these problems, we build a random walk with

jumps under the assumption that vertices can be sampled

uniformly at random from Gd (something not feasible for the

WWW graph but possible for Flickr, Facebook, and MySpace).

But why perform a random walk if we can sample vertices

uniformly? This is useful for networks where uniform vertex

sampling is costly (e.g., Flickr, Facebook, and MySpace). In

networks such as Flickr, Facebook, and MySpace one can

uniformly sample users (vertices) as users have numeric IDs

between a minimum and a maximum ID values. The high cost

of sampling comes from the fact that the ID space in these

networks is sparsely populated [5], [6], [14] and most of the

uniformly generated ID values are invalid. The cost of random

vertex sampling, which we denote as c, is the average number

of IDs queried until one valid ID is obtained. For instance,

in the case of MySpace and Flickr, these costs are estimated

to be c = 10 [14] and c = 77 (as seen in the Appendix),

respectively.

III. SAMPLING DIRECTED GRAPHS WITH RWS

Estimating characteristics of undirected graphs with random

walks (RWs) is the subject of a number of recent works [13],

[15], [17]. RW estimation methods presented in the literature

require that ∀u, v ∈ V , the probability of eventually reaching

u given that the walker is in v be non-zero. However, over

a directed graph with incoming hidden edges this may not

be true. For instance, consider a vertex v ∈ V that has one

outgoing edge but no incoming edges. If the random walker

does not start at v then v is not visited by the walker (as the

outgoing edge of v is a hidden incoming edge if some other

vertex). On the other hand, a vertex u ∈ V with no outgoing

edges becomes a sink to the random walker.

To address this issue our algorithm borrows elements from

the PageRank algorithm [3] and from the RW algorithm

described by Bar-Yossef [1]. Our algorithm, however, differs

from both algorithms, in that it can be used to estimate graph

characteristics from a (possibly small) sample of the graph.

To guarantee that the RW can reach any vertex from any

other vertex, we allow the random walker to jump to a

randomly (uniformly) chosen vertex in the graph, similar to the

PageRank algorithm [3]. In the PageRank algorithm a RW at

vertex v jumps to a uniformly chosen vertex in the graph with

probability w; and with probability (1−w) the random walker

follows an edge chosen uniformly at random from the set of

outgoing edges of v. However, as stated before, uniform vertex

sampling is a potentially “costly” form of sampling. Tuning

w allows us to control this cost.

Unfortunately, PageRank does not allow us to accurately

estimate graph characteristics, such as the out-degree distri-

bution, from a sampled subset of the graph. Estimating these

characteristics requires obtaining the steady state distribution

of the RW without exploring the entire graph [15].

s1

s2

s3

s4
s5

s6

e1

e2

s7

Figure 1. The steady state distribution of PageRank over this graph depends
on the existence of edges e1 and e2.

In the following example we see that the steady state

distribution of PageRank requires knowing the graph structure.
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Consider the directed graph shown in Figure 1, which has 7
vertices. Assume that we do not observe incoming edges. Let

s1 be the starting vertex of PageRank. At i-th step the RW is

at vertex si. Let π(v) denote the steady state probability of

PageRank visiting vertex v, ∀v ∈ V . Assume that at the k-th
step PageRank has not visited vertex s7. Without knowing the

edges of s7, say whether edges e1 or e2 exist, we cannot

determine π(s1). If e1 exists but e2 does not, π(s1) is a

function of w where limw→0 π(s1) = 0. If e2 exists but e1
does not, π(s1) = 1/7 (independently of the value of w).
In this example we need to know the entire graph to find a

reasonable approximation to π(s1). Thus, to avoid having to

explore the entire graph, we perform:

• (Backward edge traversals) Similar to Bar-Yossef’s al-

gorithm, [1] we allow the random walker to traverse some

known outgoing edges backwards. For instance, if at the

i-th step the RW is at vertex si, we allow the random

walker to traverse the edge si−1 → si backwards. To do

this our algorithm interactively constructs an undirected

graph G(∞) whose vertices are the vertices of Gd (though

the edges of G(∞) may not be the undirected equivalent

of Gd).

• (Degree-proportional jumps) At PageRank, a random

jump out of vertex v, ∀v ∈ V , is performed with prob-

ability w, independent of the degree of v. In our algorithm

a random jump from vertex v, ∀v ∈ V , is performed with

probability w/(w + deg(v)), where deg(v) is the degree

of v in G(∞).

We denote our proposed random walk algorithm random walk

with jumps (RWwJ). In what follows we detail our approach.

The backward edge traversal is detailed in Section III-A and

the degree-proportional jump is detailed in Section III-B.

A. Backward edge traversals

We allow the walker to traverse some outgoing edges

backwards. In general, if we apply this “backward walking”

principle to all outgoing edges in Gd, we can construct an

undirected version of Gd. The undirected version of Gd allows

us to apply the techniques described in [15] to estimate

the characteristics of Gd such as the out-degree distribution.

However, the degree of a vertex v, ∀v ∈ V , in the final

undirected version of Gd is only known after exploring all

edges of Gd. Thus, the steady state probability of sampling v
also requires access to the complete underlying graph (as the

probability is a function of v’s degree [15]).

To avoid this problem, our RW interactively builds an

undirected graphG(∞). This building process is such that once

a vertex is visited at the i-th step of the RW no more edges can

be added to that vertex in subsequent steps. Such a restriction

allows us to be certain of the degree of vertices visited by

the RW, independent of the actual number of incoming edges

to such vertices. Note that the final undirected graph G(∞)

depends on the sample path taken by the random walker. The

undirected graph G(∞) = (V,E(∞)) is connected, undirected,
and has the same vertices as Gd. Because G(∞) is undirected

and connected, we can estimate characteristics such as the

degree distribution [15]. Based on the above design principle,

we implement a “backward edge traversal” approach similar

to the one described by Bar-Yossef [1]. The details of the

algorithm are described in Section III-C.

The above solution addresses the problem of knowing the

degree of a vertex as soon as the vertex is sampled. However,

we still do not know the steady state distribution of the RW

when we add random jumps. In what follows we present

an algorithm that allows us to obtain a simple closed-form

solution to the steady state distribution.

B. Degree-proportional jumps

Let G = (V,E) be an undirected graph. In RWwJ, the

probability of randomly jumping out of a vertex v, ∀v ∈ V , is

w/(w+deg(v)), w > 0 . This modification is based on a sim-

ple observation: let G′ be a weighted undirected graph formed

by adding a vertex σ to G such that σ is connected to all

vertices in V with edges having weight w. All remaining edges

have unitary weight. In a weighted graph a random walk jumps

walks over an edge with probability proportional to the edge

weight. The steady state distribution of a vertex v, ∀v ∈ V ,

of a RW over G′ is (w + deg(v))/(vol(V ) + w|V |), where
vol(V ) =

∑

∀u∈V deg(u). Thus, except for the unknown

constant normalization term (vol(V )+w|V |), the steady state

distribution of v is known as we know the degree of v and

the value of parameter w when v is visited by the random

walker. By combining backward edge traversal (Section III-A)

and degree-proportional jumps (Section III-B) we obtain the

following algorithm, which we denote RWwJ.

C. The RWwJ algorithm

The RWwJ algorithm is a regular random walk over a

weighted undirected connected graph G(∞) = (V,E(∞)),
which is built on-the-fly. The algorithm works as follows.

We build an undirected graph using the underlying directed

graph Gd and the ability to perform random jumps. Let

G(i) = (V (i), E(i)) be a tuple where V (i) is the vertex set

and E(i) is the edge set at the i-th random walk step. The

tuple G(i) is such that limi→∞ G(i) = G(∞), but G(i), i <∞
is not necessarily a graph.

Let v ∈ V be the initial vertex in the random walk.

Let N (v) denote the outgoing edges of v. Let G(1) =
({s1}, E(1)), where E(1) = N (s1)∪{(u, σ) : ∀u ∈ V }, where
{(u, σ) : ∀u ∈ V } is the set of all virtual edges to the virtual

vertex σ (this construct is just to simplify our exposition, in

practice we do not need to know all vertices or add the virtual

edges to G(i)). The random walker proceeds as follows.

We start with i = 1; at step i the random walker is at vertex

si. Let

W (u, v) =

{

w if u = σ or v = σ

1 otherwise

denote the weight of edge (u, v), ∀(u, v) ∈ E(i), i = 1, 2, . . . .
The next vertex, si+1, is selected from E(i) with probability
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W (si, si+1)/
∑

∀(si,v)∈E(i) W (si, v). Upon selecting si+1 we

update G(i+1) = (V (i) ∪ {si+1}, E(i+1)), where

E(i+1) = E(i) ∪N ′(si+1) , (1)

and

N ′(si+1) = {(si+1, v) : ∀(si+1, v) ∈ N (si+1) s.t. v 6∈ V (i)}

is the set of all vertices (u, v) in N (si+1) where vertex v is

not already in V (i). Note that N ′(si+1) ⊆ N (si+1). By using

N ′(si+1) instead of N (si+1) in equation (1) we guarantee

that no vertices in V (i) change their degrees, i.e., ∀v ∈ V (i)

the degree of v in G(i) is also the degree of v in G(∞). Thus,

we comply with the requirement presented in Section III-A

that once a vertex v, ∀v ∈ V , is visited by the RW no edges

can be added to the graph with v as an endpoint.

The edges in G(i), i = 1, 2, . . . , that connect all vertices to
the virtual vertex σ can be easily emulated with uniform vertex

sampling. The pseudo code of the RWwJ algorithm is shown in

Algorithm 1, where c is the cost of randomly jumping (i.e., the

average number of IDs queried until one valid ID is obtained),

B is the sampling budget, w is the random jump weight (a

quantity that influences the random jump probability), and s1
is the starting vertex.

Space complexity: The space required to store G(i) is

O(K), where K is the number of distinct vertices observed

by the random walker.

D. Out-degree Distribution Estimator

In this section we use the vertices visited (sampled) by our

random walk with jumps algorithm to estimate the out-degree

distribution [12]. The estimator presented in this section can

be easily extended to obtain the distribution of vertex labels.

For instance, if vertices can be labeled either red or blue, we

can calculate the fraction of red and blue vertices in a graph if

we can directly query if the vertex is red or blue. Out-degrees

can be seen as a type of vertex label.

Let si denote the i-th edge visited by RWwJ, i = 1, . . . , B.

Let φj be the fraction of vertices with out-degree j. Let π(v)
be the steady state probability of sampling vertex v in G(∞),

∀v ∈ V . The out-degree distribution can be estimated as

φ̂j =
1

B

B
∑

i=1

hj(si)

π̂(si)
, j = 0, 1, . . . (2)

where hj(v) is the indicator function

hj(v) =

{

1 if the out-degree of v in Gd is j ,

0 otherwise

and π̂(si) is an estimate of π(si): π̂(si) = (w + deg(si))S .
Here deg(v) is the degree of v in G(∞) and

S =
1

B

B
∑

i=1

1

w + deg(si)
.

To show that π̂(si) is an asymptotically unbiased estimate

of π(si) we invoke Theorem 4.1 of [15], which yields

Algorithm 1: Random Walk with Jumps pseudo-code.

/* B is the sampling budget, s1 ∈ V is the initial RW

vertex, w is the random jump weight, and c is the

cost of randomly jumping */

input : B, s1 ∈ V , and w
output: m, s1, s2, . . . , sm

/* S is the set of sampled vertices */

S ← {};
/* E⋆

is a set of undirected edges */

E⋆ ← {};
i← 1;
m← 1;
while i < B − c do

E⋆ ← E⋆ ∪
{(sm, u) : ∀u ∈ V s.t. u 6∈ V ⋆ and (sm, u) ∈ E};

S ← S ∪ {sm};
/* U(0, 1) is a uniform (0, 1) random sample;

deg(sm, E⋆) returns the number of edges in E⋆

with vertex sm */

if U(0, 1) < w/(w + deg(sm, E⋆)) then
sm+1 ← randomV(V );
/* randomV(V ) returns a vertex of V chosen

uniformly at random */

i← i+ c;
else

sm+1 ← randomNeighbor(sm, E⋆);
/* randomNeighbor(sm, E⋆) returns a randomly

chosen neighbor of vertex sm among the

(undirected) edges in E⋆
*/

i← i+ 1;
end

m← m+ 1;
end

limB→∞ S = |V |/(|E(∞)| + |V |w), almost surely, and thus

limB→∞ π̂(si) = π(si), almost surely. Taking the expectation

of equation (2) in the limit B →∞ yields E[limB→∞ φ̂j ] =
φj .

E. Experimental Results

This section compares the out-degree distribution estimates

obtained with RWwJ against the ones obtained with inde-

pendent uniform vertex sampling (UNI). Our experiments are

performed over the Flickr graph. Our Flickr graph dataset [11]

consists of 1.6 millions vertices and 22 millions of edges. Let

Φj =
∑

∀i>j φi be the fraction of vertices with out-degree

larger than j and Φ̂j be an estimate of Φj .

We begin with a comparison of the estimates Φ̂10 and

Φ̂10000 (the choice of out-degrees 10 is 10000 is arbitrary)

obtained using RWwJ and UNI. Figures 2 and 3 show Φ̂10

and Φ̂10000 as a function of the number of sampled vertices,

respectively. Note that the transient of RWwJ can be long;

we comment on this transient in Section III-E. Let c denote

the cost of UNI which is also the cost of a random jump
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(the average number of IDs queried until one valid ID is

obtained). Let B denote the sampling budget (when c = 1,
B is the number of sampled vertices). Recall that in RWwJ

the probability of performing a random jump increases with w
(such that in the limit w → ∞ RWwJ is equivalent to UNI).

We see that UNI and RWwJ with large w are better suited

to estimate Φ10 than RWwJ is with w small. On the other

hand, for B < 0.1|V |, RWwJ with small w is more accurate

at estimating Φ10000 than UNI or RWwJ with large w.
Transient Bias: Unfortunately, the transient of the RWwJ

algorithm can be quite long. Say vertex v ∈ V has a

large number of hidden incoming edges. The numerous in-

coming edges increase the probability that v is sampled in

the beginning of the walk. However, once v is sampled the

degree of v in G(∞) may be small (as only a subset of the

incoming edges belong to G(∞)). With a small degree in

G(∞), the probability that v is subsequently sampled is small

which makes the first sample an outlier. Eventually, as RWwJ

progresses, this initial outlier plays a diminishing role over the

statistics being computed. However, in practice, outliers can

significantly increase estimation errors even with moderately

large number of RWwJ steps. Thus, our estimator throws away

the first αB RWwJ samples, α < 1. In the following results

we use α = 0.1 as we found it to be a good compromise

between getting rid of outliers and keeping enough samples

to accurately estimate the out-degree distribution.
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Figure 2. (Flickr) Three sample paths showing the estimates of Φ10 (true
value is 0.13) using RWwJ with jump weights w = 0.01, 1, 1000 and
independent vertex sampling. The cost of independent vertex sampling is
c = 1.
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Figure 3. (Flickr) Three sample paths showing the estimates of Φ10000 (true
value is 7.58 × 10

−6) using RWwJ with jump weights w = 0.01, 1, 1000

and independent vertex sampling. The cost of independent vertex sampling is
c = 1.

Estimation Error: However, the comparison between RWwJ

and UNI shown in Figures 2 and 3 is not fair as we assume

that c = 1 and, in the real world, Flickr has a random vertex

sampling cost of c = 77 (as observed in the experiments

presented in this section). Let

CNMSE(Φ̂j) =

√

E[(Φ̂j − Φj)2]

Φj

, j = 1, 2, . . . ,

be a metric that measures the relative error of the estimate Φ̂j

in respect to its true value Φj . Figure 4 shows an estimate

of the CNMSE (over 1000 runs) with c = 77 and sampling

budget B = 0.01|V |. The advantage of small values of

w in estimating large out-degrees is more noticeable with

c = 77. Still, UNI and large values of w are clearly more

accurate at estimating small out-degrees. But note that when

w = 0.01, RWwJ performs slightly worse than RWwJ when

w = 1 for all out-degrees. This means that when estimating

large out-degrees we should keep w small without impairing

the walker’s ability to randomly jump. Our results show

that RWwJ is more efficient in estimating the out-degree

distribution when vertex sampling is expensive. Moreover,

with RWwJ we can control the cost of vertex sampling by

tuning w.
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Figure 4. (Flickr) CNMSE of RWwJ with w = 0.01, 1, 100, 1000 and UNI,
c = 77 and B = 0.01|V |.

Here we look at the impact of the sampling budget, B,

on the estimation accuracy of the out-degree distribution.

Figure 5 presents the CNMSE of Flickr for budgets B ∈
{0.01|V |, 0.1|V |, |V |} with c = 1 and w = 0.01. We observed

that one order of magnitude increase in B reduces the error

roughly by half. We also study the impact of the cost of

uniform vertex sampling over the accuracy of the estimates.

Figure 6 shows the CNMSE with c = 1, 10, and 10,
B = 0.01|V | and w = 100. Unsurprinsingly, we observe that

the estimation error of the out-degree distribution tail increases

with c.
We also estimated the out-degree distribution of the Live-

journal graph. The Livejournal dataset [11] consists of 5
million vertices and 77 million edges of a blog social network.

Figures 7 and 8 compare RWwJ (with w ∈ {0.01, 1, 1000})
against UNI using the estimates of Φ10 and Φ722 plotted as

function of the number of sampled vertices (B), respectively.

These experiments are unrealistic (and favorable to UNI) as
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Figure 5. (Flickr) CNMSE for varying budget B with c = 1 and w = 0.01
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Figure 6. (Flickr) CNMSE for varying cost c with B = 0.01|V | and
w = 100

we assume c = 1. We observe that results are similar to the

ones in Figures 2 and 3, i.e., we see that UNI and RWwJ with

large w are better suited to estimate Φ10 than RWwJ is with w
small. On the other hand, for B < 0.1|V |, RWwJ with small

w is more accurate at estimating Φ10000 than UNI or RWwJ

with large w.
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Figure 7. (Livejournal) Three sample paths showing the estimates of Φ10

(true value is 0.35) using RWwJ with jump weights w = 0.01, 1, 1000 and
independent vertex sampling. The cost of independent vertex sampling is c =

1.

IV. ESTIMATING LATENT IN-DEGREE DISTRIBUTIONS

The above approach, used to estimate the out-degree distri-

bution, can also be used to estimate the in-degree distribution

if in-degrees are visible to the random walker. However, in

this section we consider a much harder problem: estimating

the in-degree distribution when in-degrees are hidden. Un-

fortunately, our results are negative. We show that in the

presence of hidden incoming edges one needs to sample most
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Figure 8. (Livejournal) Three sample paths showing the estimates of Φ722

(true value is 10−4) using RWwJ with jump weights w = 0.01, 1, 1000

and independent vertex sampling. The cost of independent vertex sampling is
c = 1.

of the edges of the graph in order to obtain an accurate in-

degree distribution estimate. Here the in-degree distribution

is an example of a latent graph characteristic. A latent graph

characteristic is one that cannot be directly observed but is

rather inferred (through a mathematical model) from other

observable variables. The in-degree distribution can be inferred

by independently sampling edges in the graph. For instance, in

the Flickr graph if user b subscribes to user a’s photo updates,

then the graph has a directed edge (b, a). Now consider

estimating the distribution of the number of subscribers per

account (in-degree) in the Flickr photosharing network by

randomly sampling edges. Let i be the in-degree of a given

user a and let X be a random variable that denotes the

number of sampled incoming edges of a if edges are sampled

independently and with probability p. It is easy to see that

P [X = j] = b(j, i) =

(

i

j

)

pj(1− p)i−j , j = 1, 2, . . . (3)

with b(j, i) = 0, ∀j > i. Equation (3) provides a model

from which the in-degree distribution can be inferred. Another

similar example is estimating the distribution of the number of

friends (neighbors) of private Facebook profiles by randomly

sampling Facebook friendships (edges).

However, independently sampling edges is a difficult task.

For instance, neither Flickr nor Facebook provide public

interfaces to sample edges and rejection sampling can be

quite inefficient. However, there are other ways to perform

uniform edge sampling. For instance, a random walk over an

undirected graph samples edges uniformly at random (but not

independently) [15]. Another way to sample hidden incoming

edges in a graph is to sample vertices and all of their outgoing

edges (edge samples may not be independent). One can also

monitor the traffic of an OSN in order to observe edges of

the friendship graph [2]. Our model is not tied to any specific

sampling method. Rather, we consider an optimistic model

where we can sample edges independently with probability

p. We say that this model is optimistic because, in practice,

dependency often increases estimation errors (e.g., in a RW,

the Mean Squared Error (MSE) of observed (not latent) vari-

ables is consistently larger than the MSE of independent edge

sampling [15]). In this section we provide a tight lower bound
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on the MSE of the in-degree distribution for independent edge

sampling, which we call MSELB.

A. Model

We use the Flickr graph to exemplify our uniform edge

sampling model. The following model is not intended to be

an accurate depiction of a real world scenario. Rather, it is

optimistic, assuming that edges are sampled independently.

In what follows we see that, even under our unrealistic

assumptions, no unbiased estimator can accurately compute

the in-degree distribution without sampling most of the edges

in the graph.

Consider the Flickr graph, a directed graph Gd = (V,Ed)
where vertices, V , are users and edges, Ed, represent user

subscriptions to updates from other users. Recall that the in-

degree is a latent variable in this graph. Assume that we

observe an edge e, ∀e ∈ Ed, with probability p (i.e., with

probability p we see a user subscription). Further, assume

edges are sampled independently. In what follows we present

an estimator for the in-degree distribution.

B. Observed in-degree distribution

In this section we find the relationship between the observed

in-degree distribution (obtained from the sampled edges) and

the true in-degree distribution. We say an edge is observed if it

is sampled. In a sampled edge (u, v) we observe two vertices

u and v. But if we were to estimate the in-degree distribution

using u as a sample, we would need to know the dependence

between the out-degree of u (which defines the probability by

which u is sampled) and the in-degree of u. A much simpler

estimator can be built considering just v (the “destination”

vertex). As edges are sampled independently, the probability

that a vertex v with i incoming edges has j of them sampled

is b(j, i) (equation (3)). Note that to be observed a vertex must

have at least one sampled edge. In this case, the probability

that j incoming edges of v are sampled given that v has at

least one sampled incoming edge is

b′(j, i) = b(j, i)/(1− b(0, i)) .

Let θ = (θ1, θ2, . . . , θW ) be the in-degree distribution of

Gd, and let d = (d1, d2 . . . , dW ) be the observed in-degree

distribution, and W be the largest in-degree. The following

equation relates the observed in-degree distribution d with the

true in-degree distribution θ:

d = BθT , (4)

where B = [b′(j, i)] is a W ×W matrix whose element (j, i)
is b′(j, i).

C. Mean squared error lower bound (MSELB)

This section presents a lower bound on the mean squared

error of any such unbiased estimator. In Section IV-E we

use this lower bound to show that an accurate estimate of

the in-degree distribution of Flickr or Facebook requires that

we sample edges with high probability (e.g., p = 0.9). In
doing so we make extensive use of the Fisher information.

The Fisher information can be thought of as the amount

of information that a set of observable samples, d, carry

about unobservable parameters, θ, upon which the probability

distribution of the samples depends. The following closely

follows the exposition in [16], which estimates the flow size

distribution from sampled packets.

The likelihood function f of one sampled vertex associated

with j sampled incoming links is

f(j | θ) = d(j) , (5)

where d(j) is the j-th element of d in equation (4). The

unconstrained Fisher information [16] is a matrix J = [Ji,k]
where

Ji,k ,
∑

∀j

∂ ln f(j | θ)

∂θi
·
∂ ln f(j | θ)

∂θk
d(j).

Equations (4) and (5) yield ∂ ln f(j | θ)/∂θi = b′(j, i)/d(i).
Thus,

J = BDBT , (6)

where D is a diagonal matrix whose element (j, j) is Dj,j =
1/d(j). With the likelihood function it is trivial to build a

Maximum Likelihood Estimator (MLE).

Equation (6) gives the Fisher information of one sampled

vertex. A vertex v is sampled if v has at least one sampled

incoming edge. Let p be the edge sampling probability and

S be the set of sampled vertices. Since each sampled edge

is selected independently, vertices in S are also sampled

independently. The Fisher information of S is then the sum of

the Fisher information of each of the samples [4]. Let N be

a random variable that denotes the number of distinct vertices

sampled.

The most notable property of the Fisher information is a

bound on the accuracy of estimators. Let T be an unbiased

estimator of θ (E[T (S)] = θ). The Cramér-Rao theorem states

that the mean squared error of any unbiased estimator T
is lower bounded by the inverse of the Fisher information,

provided some weak regularity conditions [20], i.e.,

E[(T (S)j − θj)
2] ≥ Ij,j , (7)

where I = J−1/N and J−1 is the inverse of the Fisher infor-

mation matrix. We refer to the lower bound in equation (7) as

the MSELB. Thus the MSELB is

E[I] = J−1E[1/N ] =

J−1

|V |θ1
∑

n1=0

· · ·

|V |θW
∑

nW=0

∏W

i=1

(

|V |θi
ni

)

qni

i (1− qi)
|V |θi−ni

∑W

i=1 ni

,

where
∑W

i=1 ni 6= 0, qi = 1 − (1 − p)i, and the number of

vertices with degree i is |V |θi.
Constraints on the estimated parameters provide information

to the estimator and can increase the Fisher information

content of the samples. As θ is a distribution, we have the

following constraints,

0 < θi < 1, ∀i ∈ {1, ...,W} and (8)
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W
∑

i=0

θi = 1. (9)

If the equality constraint in equation (9) is active [18]

I = (J−1 − θθT)/N . (10)

In our experiments we observe that the diagonal elements of

θθT/N are negligible in respect to the diagonal elements of

J−1/N when p < 0.9, and, thus, we conclude from equa-

tions (7) and (10) that the equality constraint in equation (9)

does not significantly increase the estimation accuracy when

p < 0.9. Our Fisher information calculations also ignore the

inequality constraints in equations (8) (they are not crucial if

we are dealing with unbiased estimators). In [16] the reader

finds the necessary treatment to include equations (8) in our

Fisher information calculations.

The inverse of J is a crucial step at calculating the MSELB.

J−1 can be written J−1 = B−1D−1(B−1)T, where B−1 is

given in the following lemma.

Lemma 4.1: B−1 = [b⋆(j, i)], where

b⋆(j, i) =

(

i

j

)

p−i(p− 1)i−j(1 − (1− pj) , i ≥ j

and b⋆(j, i) = 0, i < j.
Proof: Let B−1 = [b⋆(j, i)] be as defined in Lemma 4.1.

We need to show that Y , Y = BB−1, is an identity matrix.

Consider element (j, i) of Y :

yj,i =

W
∑

l=1

b′(j, l)b⋆(l, i) . (11)

Let’s divide yj,i into three distinct cases: j > i, j = i, and
j < i. Note that the definition of b yields b′(h, k) = 0, ∀h > k.
If j > i equation (11) yields yj,i = 0 as b′(j, l) = 0, ∀l ≤ i
and b⋆(l, i) = 0, ∀l > i. If j = i, then b′(j, l)b⋆(l, j) = 0,
∀l 6= j and, thus, equation (11) yields

yjj =
pj

1− (1− p)j
p−j(1− (1 − p)j) = 1 .

If j < i, equation (11) yields

yji =

i
∑

l=j

(−1)i−lpj−i(1− p)i−j

(

l

j

)(

i

l

)

= pj−i(1 − p)i−j

i
∑

l=j

(−1)i−l

(

i

j

)(

i− j

l − j

)

= pj−i(1 − p)i−j

(

i

j

) i
∑

l=j

(−1)i−l

(

i− j

l − j

)

= pj−i(1 − p)i−j

(

i

j

)

(1− 1)i−j

= 0

Thus, yj,j = 1, ∀j and yj,i = 0, ∀j 6= i, which concludes our

proof.

In what follows we assume that the out-degree distribution is

known. By assuming we know the out-degree distribution we

are also assuming that we know the average in-degree, as the

average in- and out-degrees are the same. Unfortunately, our

results show no significant gain in accuracy when the average

in-degree is used as side information.

In a graph where all edges are symmetric (i.e., every

edge (u, v) ∈ Ed has a corresponding edge (v, u) ∈ Ed)

the in-degree and the out-degree distributions are the same.

Thus, in a graph with a large fraction of symmetric edges,

one expects to be able to shift the information regarding

the out-degree distribution to the in-degree distribution. In

what follows we consider graphs that are highly symmetric,

i.e., most edges (u, v) ∈ Ed have a corresponding edge

(v, u) ∈ Ed. In Section IV-E we see that, unless almost all

edges are symmetric, graph symmetry has a little impact on

the accuracy of the estimator.

D. Symmetric Edge Information

Consider a directed graph Gd = (V,Ed). An edge (u, v) ∈
Ed is said to be symmetric if (v, u) ∈ Ed. Let s denote the

fraction of symmetric edges in Ed, where s = 1 when all edges
in Gd are symmetric. Edge symmetry can convey information

about the in-degree distribution. For instance, if s = 1 the

in-degree distribution equals to the out-degree distribution.

To assess the increase in estimation accuracy that can come

from the presence of symmetric edges, consider the following

model.

Let v be a sampled vertex. Consider the following random

variables of v:

• Z: in-degree of v.

• Zs: number of symmetric incoming edges.

• Za: number of incoming asymmetric edges.

• Y : observed out-degree.

• Xs observed number of symmetric incoming edges.

• Xa observed number of asymmetric incoming edges.

Also, let ρ(y, z) = P [Y = y, Z = z] be the joint in-degree and
out-degree distribution of v, p be the sampling rate, and α be

the fraction of symmetric edges. We assume that the number of

outgoing edges of v that are symmetric is a Bernoulli random

variable with parameter α and has distribution

P [Zs = zs|Y = y, Z = z] =
{

(

min(y,z)
zs

)

αzs(1− α)min(y,z)−zs if zs ≤ min(y, z),

0 otherwise.

(12)

We seek to find a likelihood function of the observed random

variables Y , Xs, and Xa in respect to ρ, P [Y = y,Xs =
xs, Xa = xa|ρ]. Note that

P [Y = y,Xs = xs, Xa = xa|ρ]

=
∑

∀z

P [Xs = xs, Xa = xa|Y = y, Z = z]ρy,z

=
∑

∀z

ρy,z

z
∑

zs=0

P [Xs = xs, Xa = xa|Zs = zs, Y = y, Z = z]×

P [Zs = zs|Y = y, Z = z],
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where

P [Xs = xs, Xa = xa|Zs = zs, Y = y, Z = z]

= P [Xs = xs, Xa = xa|Zs = zs, Y = y, Za = z − zs]

=

(

zs
xs

)

pxs(1− p)zs−xs

(

z − zs
xa

)

pxa(1− p)z−zs−xa

=

(

zs
xs

)(

z − zs
xa

)

pxs+xa(1 − p)z−xs−xa

with P [Zs = zs|Y = y, Z = z] as defined in equation (12).

The in-degree distribution Fisher information associated

with the symmetric edge information can be computed from

the Fisher information of P [Y = y,Xs = xs, Xa = xa|ρ]
with respect to ρ by noting that θ, the in-degree distribution,

can be defined as θz =
∑

∀y ρ(y, z) , ∀z, or in matrix form

θ = HρT, where ρ = (ρ(1, 1), ρ(2, 1), . . . ) and

H =









1 . . . 1
1 . . . 1

. . .
1 . . . 1









.

Let Jρ denote the Fisher information with respect to the joint

distribution ρ. Computing Jρ from P [Y = y,Xs = xs, Xa =
xa|ρ] is an easy task. Let Jθ denote the Fisher information

with respect to the in-degree distribution θ. Then [20, pages

83–84]

Jθ = HJρH
T.

The above equations allow us to compute the information

obtained from knowing that the graph is highly symmetric. In

the results presented in Section IV-E we observe that adding

symmetric information does not significantly improve the

estimation error unless most edges in the graph are symmetric.
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Figure 9. (Flickr) MSELB with W = 5, . . . , 14 and p = 0.1.

E. Experimental Results

This section studies the “hardness” of estimating the in-

degree distribution of Flickr and Facebook using indepen-

dently sampled edges. The Flickr dataset [11] consists of 1.5

millions vertices and 17 millions of edges and the Facebook

dataset [7] has 1 million vertices and 92 millions of edges. Let

W be the maximum in-degree in the graph. Both Facebook and

Flickr have vertices with more than 104 incoming edges, i.e.,

W > 104 and recall that the Fisher information is a W ×W
matrix. In order to reduce the computational effort to compute

the MSELB (and keep numerical errors under control) we

restrict W ∈ {100, 50, 20}. Our experiments show that the

MSELB increases with W , which means that the results for

W > 100 should be worst than the (already negative) results

we show in this section. In order to evaluate the impact of

choosing a small value of W over the MSELB, Figure 9 uses

the MSELB with p = 0.1 for different values of W over the

Flickr graph. We observe that the MSELB roughly increases

one order of magnitude when W is incremented by 1, which
indicates that our MSELB (taken for small values of W ) is

optimistic when compared to the MSELB with the true value

of W (W > 104).
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Figure 10. MSELB with p = 0.1, 0.5, and 0.9.

We begin by showing the MSELB of Flickr and Facebook

for W = 100 and p = 0.1, 0.5, and 0.9 in Figure 10. The

Flickr and Facebook curves overlap for each different value

of p. In Figure 10 we observe that the MSELB is high for

all out-degrees when p = 0.1 (and the MSELB is high for

most out-degrees when p = 0.5). This means that unbiased

estimates are inaccurate when, on average, 10% or even 50%
of the graph edges are sampled. Also note that the MSELB

is low when p = 0.9, which means that accurate unbiased

estimates can be obtained when (on average) 90% of the graph

edges are sampled.

In the following experiment we include symmetry infor-

mation in the MSELB (Section IV-D). Figure 11 shows the

results of Flickr for W = 20, with and without Flickr’s

symmetric information. In Flickr the fraction of edges that

are symmetric is α = 0.62. Observe that while symmetry

reduces the MSELB, it is not enough to significantly increase

the estimation accuracy.

In practice the MSELB defines a bound on what we can

expect from our experiments. However, different than in the

MSELB, the inequality constraints in equations (8) play a

significant role at keeping the MSE bounded, but they also

bias the estimator (and in practice offer little help at obtain-

ing correct estimates). In what follows we estimate the in-

degree distribution of Flickr by sampling edges of the Flickr

graph (independently with probability p) and then counting

the number of incoming edges (observed in-degree) of each

sampled vertex. Using a MLE over the observed in-degrees

we estimate the original in-degree distribution. According

to the MSELB results (shown in Figure 10) no unbiased
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Figure 11. (Flickr) MSELB with and without symmetric edge information.

estimator can obtain an accurate estimate of the distribution

using sampling probabilities p = 0.1 and p = 0.5.
The following results are optimistic as we limit our estima-

tor to W = 50 (i.e., we remove vertices with more than 50
incoming edges from the graph). Figure 12 plots the estimates

for p = 0.1, 0.5, and 0.9. Observe that while the estimates

with an average of 90% of the edges sampled (p = 0.9) are
reasonable (but not accurate at the tail, though), the estimates

with p = 0.1 and p = 0.5 are all over the place (as predicted by
the MSELB). But how far are the MSE of the MLE estimates

in respect to the MSELB? Figure 13 shows an extreme case

where, on average 99% of the edges are sampled (p = 0.99)
with W = 50. Observe that only the error of the tail estimates

get close to the MSELB.
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Figure 12. (Flickr) MLE in-degree distribution estimates for p =

0.1, 0.5, and 0.9.

V. RELATED WORK

To the best of our knowledge our work is the first to study

and provide a sound theoretical analysis of the problem of

estimating latent in-degree distributions. Regarding estimating

observable characteristics, sampling a directed graph (in this

case, the Web graph) has been the subject of [1] and [9], which

transform the directed graph of web-links into an undirected

graph by adding reverse links, and then use a Metropolis-

Hastings RW to sample webpages uniformly. However, as the

Web graph does not allow random jumps, these algorithms

are unable to sample all vertices. On the other hand, our

RWwJ algorithm samples the entire graph thanks to the ability
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Figure 13. (Flickr) MSE of MLE in-degree distribution estimates with p =

0.99

to perform random jumps. Random walks with PageRank-

style jumps are used in [10] to sample large graphs. In [10],

however, the estimates presented in are highly biased and the

authors do not present a technique to remove such bias. In con-

trast, our out-degree distribution estimates are asymptotically

unbiased.

VI. CONCLUSIONS & FUTURE WORK

In this work we presented a random walk algorithm that

can estimate the out-degree distribution of a directed graph

when random jumps are allowed. Our algorithm is better

suited to estimate the tail of the out-degree distribution than

uniform vertex sampling. Because random vertex sampling

can be expensive, our algorithm has a parameter w that

controls the probability of performing a random jump. By

tuning w we transition between pure uniform vertex sampling

and a pure random walk with no jumps. We also study the

problem of estimating latent in-degree distributions. We show

that accurate unbiased in-degree distribution estimates require

sampling almost all of the edges in the Flickr and in the

Facebook graphs. We also show that the extra information

obtained from the symmetric edges in the Flickr graph does

not significantly increase estimation accuracy. Our future work

includes reducing the transient of our RWwJ algorithm.
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APPENDIX

The cost of uniformly sampling Flickr vertices

Flickr assigns a numeric ID to each user. The Flickr ID

consists of a numeric eleven digit prefix number followed by

“@N”, followed by a two digit suffix number [19]. However,

Filckr has fewer users than a 11+2 digit numeric ID suggests

(1013 is the approximate theoretical maximum number of users

of Flickr). Thus, we first assess how IDs are dispersed over the

ID space. In what follows we say an ID is valid if it has at least

one outgoing link. We start our sampling from 100 random

(but valid) IDs and crawl the all their visible outgoing links

until 85000 distinct IDs are collected. Note that all visited IDs

(module the 100 seed IDs) have at least one incoming edge.

The distribution of ID prefixes and suffixes observed in our

experiment are shown in Figures 14 and 15. To plot Figure 14

we split ID prefixes into bins Si = [i × 107, (i + 1) × 107)
(0 ≤ i < 10) and s10 = [108,∞). Observed that nearly 90%
ID prefixes are in the interval [107, 108). We also observe that

the suffix is a number in the interval [0, 8] (Figure 15).

Our experiment consists querying 16000 numeric IDs with

prefixes uniformly sampled from the interval [107, 108) and

with suffixes uniformly sampled in the interval [0, 8]. We

restrict the prefixes to the interval [107, 108) in order to

increase our hit-to-miss ratio (thus, the actual cost of randomly

sampling IDs is likely to be higher). Querying all 16000 IDs

took twelve hours and only 206 valid IDs were found, i.e., in

average only one valid ID is obtained from every 77 queries.

Thus, we say that the cost of uniformly querying Flickr IDs

is c = 77.
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