
Manifold learning for online peer-to-peer flow classification

Bruno Ribeiro RIBEIRO@CS.UMASS.EDU

Don Towsley TOWSLEY@CS.UMASS.EDU

Department of Computer Science, University of Massachusetts at Amherst, Amherst, MA, USA

Abstract

This work presents an application of Lagrangian
eigenmaps for unwanted network traffic classi-
fication. This classification is crucial when en-
forcing network usage policies aimed at curbing
the growing illegal peer-to-peer file sharing ac-
tivity, which now accounts for a large fraction of
the total Internet traffic. In this work we show
that this application domain has inherent issues
that makes more traditional learning methods un-
fit for the task but are successfully addressed by
manifold learning methods.

1. Introduction

This work provides an in-depth view of online peer-to-peer
traffic classification. Peer-to-peer (p2p) traffic classifica-
tion imposes a series of requirements on classifiers. We
show that these requirements can be translated into ge-
ometric constraints of the feature space. Moreover, we
show these constraints to limit the efficacy and applicabil-
ity of traditional learning methods. The implication of our
study is that graph-based manifold learning methods, more
specifically Laplacian eigenmaps, a perfect fit for our prob-
lem whereas more traditional learning methods, such as
Gaussian Mixture Models (GMMs) andk-means, are not.

In this work we present a realistic p2p traffic classifi-
cation scenario and conclude that it requires more ad-
vanced Machine Learning tools than the ones used in ear-
lier works (Bernaille et al., 2006). In Section 2 we in-
troduce the peer-to-peer traffic classification problem and
its more traditional solutions under a Networks engeneer-
ing perspective. The introduction of the problem motivates
Section 3 where we present a series of requirements that
are then translated into constraints on the classifier feature
space. In Section 4 we see that more traditional learning
methods are unfit for our application, which takes us to

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

manifold learning methods. Later, we present our exper-
imental results against a Gaussian Mixture Model classifier
in Section 5 and show that even under a more idealized sce-
nario where traditional classifiers are not heavily punished
by their lack of knowledge of the spacial constraints, the
GMM is outperformed by the Laplacian eigenmaps classi-
fier. The GMM classifier was previously reported to be the
best classifier for p2p traffic classification (Bernaille et al.,
2006). Finally, we introduce the related work in Section 6
and conclude, showing future directions, in Section 7.

2. Background and Motivation

The Internet is designed to allow free information flow be-
tween users. While this freedom must be defended, in-
creasing illegal activities should also be addressed. One
of the most prevalent forms of misbehavior is the use of
peer-to-peer (aka p2p) applications for illegal music and
movie sharing. Academic institutions (mainly universities)
are among the greatest sources of these problems: typically
p2p flows account for 60% of all their Internet traffic, 90%
of which consists of copyright violations, according to a
recent MPAA report (Taylor, 2005). Automated classifica-
tion of p2p traffic is needed if network administrators are
serious about curbing illegal network activity.

Curbing such illegal activity without violating users’ free-
dom can be achieved by means of a policy that discourages
p2p file sharing without censoring it. Such a policy has two
main steps: (1) Detect active TCP/UDP connections (aka
flows) that belong to p2p applications and (2) limit the ag-
gregate p2p flow throughput (number of bytes per second)
of a host while making the best effort to not interfere with
other types of traffic. This policy mandates the classifica-
tion to be online, i.e., performed before the flow ends. A
great deal of recent work has targeted the development of
application flow content parsers. These techniques consist
of parsing packet contents to classify flows into applica-
tions (Cisco Systems, 2005; Moore & Zuev, 2005; Kara-
giannis et al., 2004; Sen et al., 2004), just to cite some
approaches. Today’s most prevalent p2p protocol parsers
are not CPU intensive. Parsing a thousand flows per sec-
ond can be CPU intensive but still manageable for small to

Manifold learning for online peer-to-peer flow classification

moderate sized networks (Cisco Systems, 2005). However,
given that p2p protocol designers can be seen as adversaries
to our policy it is easy to see that in the near future more
and more processing power will be needed to classify p2p
flows. In this scenario, network routers would not have
enough processing power to run complex p2p parsers over
all network flows. Even in small networks expensive spe-
cialized hardware would be needed. This last statement
brings us to the first important rule in p2p flow classifica-
tion: Any flow classifier is working against an active ad-
versary. Ignoring this aspect can condemn a solution to be
short lived.

In this work we present a classifier that can be used to im-
plement a policy to discourage p2p Internet file sharing in
a campus or an enterprise network. This classifier would
complement today’s content parsers in a scenario where
the latter can only classify a fraction of the flows. Using
classifiers against adversaries is a known problem in spam
e-mail classification (Dalvi et al., 2004). Spam e-mail clas-
sification needs a classifier that can deal with evading ad-
versary strategies to increase the misclassification rate.But
our problem is more than just flow misclassification: The
rate limiter should be effective enough to discourage p2p
file sharing. This motivates us to compile a list of possible
attacks on our policy:

Adversary attacks

1. The p2p application opens multiple connections and
reopens connections that had their throughput artifi-
cially reduced.

2. The p2p application creates p2p flows that closely
mimic features of non-p2p flows.

3. The p2p protocol designer increases the content pars-
ing detection complexity, drastically reducing the
number of parsed flows for a given CPU usage.

The above adversarial attacks and the nature of the problem
impose a series of constraints to our classifier that are com-
piled as a series ofrequirementsfor our classifier as seen
next.

3. Classifier requirements

Based on the previous section we can devise a series of
requirements for our classifier:

(1) Classify a flow right after the arrival of its first pack-
ets. The flow throughput limiter should kick in as fast as
possible to defeat thefirst adversarial attack of Section 1.
TCP flows are designed to exchange data at lower rates dur-
ing the beginning of their connections. The average flow
throughput prior to classification should not be higher than
the desired rate limited throughput.

(2) Classify over a large set of flow features.Increasing the
number of flow features to be classified directly translates
into greater security against p2p flows that try to mimic
non-p2p flows as described in thesecondadversarial attack
of Section 1. Some important features, such as Operating
System fingerprints, are not easy to translate into meaning-
ful values that can be used inside a classifier.

(3) Learn from a partially labeled training data set.La-
beling flows can be an expensive operation if flow content
parsing complexity is high due to thethird adversarial at-
tack of Section 1. A good classifier should be able to inflate
its training set with unlabeled samples.

(4) Guaranteed fast classification.It needs to work over
a high speed Internet links with little CPU resource con-
sumptionperflow.

Classifier requirement (1) implies that only features from
the firstK packets in the flow can be used, withK typically
very small. These features must be simple to extract while
allowing a differentiation of p2p and “non-p2p” flows. This
task relies upon a good distance metric between the collec-
tion of features of two distinct flows. Small distances be-
tween two flows imply that these flows have similar char-
acteristics. Distance metrics in our problem are a non-
trivial issue, which bring us to the classifier requirement
(2): Learn from “non-numeric” features such as the Oper-
ating System type. Assume a feature space “Operating Sys-
tem type” (OS type) and “size of the first packet in the con-
nection”. Letw1 = (Windows, 100), l1 = (Linux, 200),
ands1 = (Solaris, 200) be samples from this feature space.
Vectorw1 represents a flow from a Windows machine with
first packet size of 100 bytes. Is the distance betweenw1

and l1, denoted as|w1 − l1|, larger than|w1 − s1|? It is
unlikely that we will be able to find an answer to this ques-
tion. We are only sure that two Linux flows should be much
closer to each other than Linux and Windows flows. A sim-
ple solution to the above problem is to create a classifier
for each OS type. However, this is undesirable as it can
seriously impair the classifier by reducing the number of
training samples. Even in the case where all flows have
the same OS type, a definition on how to measure packet
sizes distances is needed. Letw2 = (Windows, 110).
We can probably agree that|w1 − w2| is small. But let
w3 = (Windows, 956) and w4 = (Windows, 1024). Is
|w2 −w3| < |w2 −w4| or |w2 −w3| > |w2 −w4|? Vectors
w1 andw2 could represent flows with text messages andw3

andw4 could represent flows from a file download, which
make us conclude that the difference between packet sizes
is only really important when it is small.

Manifold learning for online peer-to-peer flow classification

Figure 1.Traffic classification schematics

Name Definition

l Number of training flow samples
S Set of training flow records
Y Set of training labels
h Number of labeled training samples
l − h Number of unlabeled training samples
m Number of features
xi Training flowi feature vector
yi Flow i app. type:1 if p2p,−1 otherwise
X Set of training feature vectors
k Number of nearest neighbors
L Graph Laplacian
vi i th smallest eigenvector ofL
n Number of eigenvectors used in classifier

Table 1.Notations table.

4. Classifier design

Having reviewed the desired classifier requirements let us
now develop a classifier that conforms to these specifica-
tions. Figure 1 shows a schematic of our approach. The box
labeled “Classifier” represents our proposed (main) classi-
fier. The figure displays anaccess routerthat can be a uni-
versity gateway concentrating all university traffic to/from
the Internet. Links that come in and go out of this type of
access router are commonly high speed optical cables. The
main classifier is in charge of classifying all flows travers-
ing theaccess router. This classifier needs to be calibrated
using a training data set. A subset of this training data
comes from a fraction of the total number of flows that
is redirected from the access router to theContent Parser,
such as (Cisco Systems, 2005), and then classified into p2p
or non-p2p flows. We assume that theContent Parseris
able to perfectly classify all flows. The remaining fraction
of the training data is comprised of unlabeled flows. This
guarantees that the classifier requirement (3) is satisfied:
Ability to learn from a partially labeled training data set.
Feeding our training data set with content parsed flows en-
sures that our training data is up-to-date, making the clas-
sifier more resilient to changing adversary strategies.

The high level design described above places the box
“Classifier” into the core of our p2p file sharing discour-

agement policy. It is now time to turn our attention to the
construction of such classifier. LetSl = {s1, . . . , sl} be
the set of flow records corresponding to our training data.
Let yi ∈ {−1, 1} be a label for flowi such thatyi = 1 if
and only if flow i is a p2p flow, andyi = −1 otherwise.
Assume, without loss of generality, that(s1, . . . , sh) are
labeled samples and(sh+1, . . . , sl) are unlabeled samples.
Let Y = (y1, . . . , yh) be the set of labels associated with
flow recordsSl. In what follows we also omit the depen-
dency onl to simplify the notation. Letφr be ther th fea-
ture extraction functions and letxi = (φ1(si), . . . , φm(si))
andX = (x1, . . . , xl). Note thatm is the number of fea-
tures extracted from the training data set. Table 2 shows
four features from an actual trace. The inner product
< xi, xj > is defined if and only if samplesxi andxj are
“close enough”. In the OS fingerprint example of Section 3,
a “Windows” flow and a “Linux” flow are not considered
to be close enough. Let‖xi − xj‖ =< xi, xj >1/2 be a
distance metric overX . The fact that the inner product is
not defined over all points in spaceX is an issue for classi-
fiers such as the K-means, Gaussian Mixture Models, and
HMMs used in (Bernaille et al., 2006). All these require-
ments motivate our search for a classifier that can easily
accommodate them.

Choosing a classifier.We use the above requirements to
select a set of classifiers that can be effectively used in
our problem domain. Graph-based methods for manifold
learning are clearly a perfect fit [Saul et al, “Dim red sur-
vey”]. Among the graph-based methods, isomap (Tenen-
baum et al., 2000), maximum variance unfolding (Wein-
berger & Saul, 2004), locally linear embedding (Roweis &
Saul, 2000), and Laplacian eigenmaps (Belkin & Niyogi,
2002) are the best known. Please refer to (Saul et al.,
2006) for a compreehesive survey on the subject. We
choose Laplacian eigenmaps manifold learning for our
classifier as its learning phase scales best, together with
locally linear embedding, for moderately large data sets
(< 10, 000) (Saul et al., 2006). Next we describe the train-
ing phase of our Laplacian eigenmap classifier.

Training. Let G(X, E) be an undirected weighted graph
with edges(xi, xj) ∈ E, wherexi, xj ∈ X if and only if
‖xi − xj‖ (the distance between verticesxi andxj) is de-
fined and is among thek th smallest distances from vertices
xi or xj to all other vertices. An edge(xi, xj) is associated
with a weight obtained from the function

W (xi, xj) = exp

(

−
‖xi − xj‖

t

)

.

FunctionW decays exponentially as the distance‖xi−xj‖
grows larger thus enforcing locality. Constantt controls the
exponential decay.

Let A be the adjancecy matrix of graphG. We denote
the corresponding graph Laplacian byL = A − W . Let

Manifold learning for online peer-to-peer flow classification

v1, . . . , vn be then eigenvectors corresponding to then

smallest eigenvalues of the eigenvector problemLv = λv.
Letvj(i) be thei th element of eigenvectorvj . We are look-
ing for a vector of coefficientsα = (α1, . . . , αn) that sat-
isfies

argmin
α∈Rn

h
∑

i=1

yi −
n
∑

j=1

αjvj(i)

2

. (1)

Let P be anh × n matrix with P = [vj(i)] for i ≤ h.
The pseudo-inverse ofP can be used to find a solution to
equation (1):

α = (PTP)−1PTY.

Note that the training phase can be easily carried out in
a backend server and thus does not share the same CPU
resource constraints as the classification phase. Next we
describe how to use the trained classifier for p2p flow clas-
sification.

Classification.Let c be a flow record that needs to be clas-
sified andx(c) = (φ1(c), . . . , φm(c)) be its feature vector.
Let N be a set with thek nearest neighbors ofx(c), i.e.,
∀xi ∈ X , xi ∈ N if and only if ‖x(c) − xi‖ is among thek
smallest of all distances‖x(c) − xj‖ ∀xj ∈ X . Recall that
X is our training set. Unlabeled flowc is assigned class
y(c), computed by the expression

y(c) =

n
∑

j=1

αj

∑

∀xi∈N

W (x(c), xi)vj(i). (2)

Last, we address classifier requirement (4): The classifi-
cation algorithm must be fast. From the above we can
conclude that its slowest part is to compute thek-nearest
neighbors ofx(c) in X . A simple naive algorithm takes
O(l) time, which is prohibitively slow for high speed Inter-
net links. But it is possible to find anǫ approximation to
thek-nearest neighbors problem with time that is logarith-
mic in l (Liu et al., 2004). In practice this approximation is
shown to be fast and quite accurate (Liu et al., 2004), which
solves classifier requirement (4).

Next we test the accuracy of our classifier over real Internet
flow features.

5. Experimental evaluation

In this section we evaluate our classifier against
the (Bernaille et al., 2006) data set. This data set is, to
the best of our knowledge, the only publicly available net-
work trace with p2p flow labels. In what follows we refer
to the (Bernaille et al., 2006) data set as data setU . We
use data setU to compare our methodology against the
methodology described in (Bernaille et al., 2006). This
comparison shows our classifier to be significantly more
accurate in classifying p2p flows (true positives) than the

best classifier in (Bernaille et al., 2006) (Gaussian Mixture
Model or GMM) while keeping rougthly the same fraction
of true negatives (fraction of non-p2p flows correctly clas-
sified).

Data setU is comprised of24, 261 flows divided into
5, 697 p2p flows (bittorrent, edonkey, gnutella, fasttrack)
and18, 564 non-p2p flows (ftp, http, https, ssh, msn, ...).
Each flow has its application label (“p2p” or “non-p2p”),
its first four packets sizes and directions, and port number.
Features such as flow OS fingerprint (Zalewski, 2006) or
IP source and destination addresses are unfortunately ab-
sent fromU . The presence of such features would put our
classifier in a much more advantageous position relative to
the classifiers in (Bernaille et al., 2006) as none of them are
suited for the use of “non-numeric” features. Collecting In-
ternet traces with all these features is subject of future work
as it is delicate task which raises many security and privacy
concerns.

Although port numbers could improve the classification ac-
curacy (most applications use unique port numbers), we
choose not to add this feature to the classifier as we be-
lieve it could be turned against us. Consider a scenario
with 1000 web flows (on port 80), 1000 e-mail flows (on
port 25), 1000 ftp flows (on port 21), and 30 p2p flows
equally distributed among the same ports: 80, 25, and 21.
By definition, a port 21 flow is far away from any other
flows with port numbers other than 21. Thus p2p flows are
now divided into three groups of 10 flows each and “near”
much larger groups of flows with 1000 flows each which
can confuser our classifier. As users are adversaries and
they can choose p2p flow port numbers, the addition of this
feature can have unpredictable consequences.

Section 4 shows that our classifier needs a locally defined
distance metric‖ · ‖ over U . Let φr be the size and the
direction of ther th packet in the flow. The direction of the
r th packet is represented by the sign ofφr. If φr < 0,
the packet is an incoming packet (from the Internet) and
when φr > 0 the packet is an outgoing packet (to the
Internet). Table 2 shows an excerpt with some values of
φr, r ∈ {1, 2, 3, 4} contained in our data set. Recall that
φr(sj) is the size of ther th packet of thej th training flow
sj . The distance betweenxi, xj ∈ X is given by

‖xi − xj‖ =

(

4
∑

r=1

(φr(si) − φr(sj))
2

)1/2

if and only if ‖xi − xj‖ ≤ d. Otherwise the distance be-
tweenxi andxj is not defined. In our experiments we use
d = 500.

In the first set of experiments we train our classifier us-
ing 1, 000 labeled and1, 000 unlabeled flows selected uni-
formly at random fromU with the restriction that half of

Manifold learning for online peer-to-peer flow classification

Application φ1 φ2 φ3 φ4

non-p2p 306 -250 -1380 -487
non-p2p 418 -1452 -31 -1452
non-p2p 1460 1460 604 -1460
non-p2p 984 -161 979 -192
non-p2p 410 -1460 -1460 -1460
non-p2p -1460 -1460 -1460 -1460
non-p2p -23 56 -544 544
non-p2p 26 -26 77 -157
non-p2p -6 -456 16 -68
non-p2p 69 -63 -1460 -257
non-p2p 102 -146 67 358

p2p 68 -68 -640 -640
p2p 68 -68 572 -572
p2p 60 -111 68 -144
p2p 103 -68 85 -134

Table 2.Feature samplesper application type.φr is the size of
the r th packet in the flow for a given application. The value of
the packet size signal indicates whether it is an incoming oran
outgoing packet.

the samples are p2p flows and the other half are non-p2p
flows. Unlabeled flows are obtained by throwing away
flow labels. LetS be the training set andS′ be a subset
of all labeled flows inS. We test the classifier sensitiv-
ity to k (the number of nearest neighbors),n (the number
of basis vectors), andt (the speed of the exponential de-
cay ofW). The test consists in evaluating its classification
accuracy over a data setQ ⊆ U (we evaluateQ = S′

andQ ⊂ U − S). The values ofk, n, and t tested are
t ∈ {100, 200, 300, 400},k ∈ {6, 8, 12, 14, 16, 18, 20}and
n ∈ {100, 150, 200, 250, 300}. For each flowc ∈ Q our
classifier outputsy(c) ∈ [−1, 1]. The closery(c) is to1(−1)
the more certain the classifier is thatc is a p2p(non-p2p)
flow. Then what ify(c) = 0? Upon such event we declare
flow c to have anundefined label. Moreover, this concept
can be generalized by defining a range[−γ, γ] in which
flow c is declared to be “undefined” iffy(c) ∈ [−γ, γ]. Let
Iγ be the set of flows declared to be “undefined”. Define
the true positive(negative) ratio as the fraction of p2p(non-
p2p) flows inQ − Iγ to be correctly classified. And define
the “undefined label” ratio as the number of flows inIγ di-
vided by number of flows inQ. We expect true positive and
negative ratios to increase with the increase in the number
of “undefined” flows.

In order to assess how well our classifier represents the
training setS′, we first compute the classification accuracy
over the training set, i.e.,Q = S′. The best set of param-
eters in this experiment isk = 8, n = 250, andt = 400.
Figure 2 shows a graph of the true positive and negative
ratios against the fraction of “undefined” flows for three
most representative parameter configurations over 30 inde-

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
ne

ga
tiv

e
ra

tio

Undefined label ratio

k=8, n=250, t=400
k=20, n=200, t=400

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
po

si
tiv

e
ra

tio

Undefined label ratio

k=8, n=250, t=400
k=20, n=200, t=400

Figure 2.Classification of the training setS′. Graph of true neg-
ative (upper graph) and true positive (lower graph) ratios against
the “undefined label” ratio. Most representative curves. From our
experiments we conclude thatk = 8, n = 250, andt = 400 are
the best set of parameters for our classifier.

pendent runs. These curves outline the overall result of our
experiment. The vertical bars represent the standard devi-
ation of our measure. From the graph we can see that our
classifier is fairly robust to the number of nearest neigh-
borsk (refer to the Appendix section for a similar analysis
on the number of basis vectorsn).

Now we evaluate how well our classifier performs with
flows that arenot part of the training setS and compare
the results with the best classifier presented in (Bernaille
et al., 2006). LetQ be a set of2, 000 flows selected uni-
formly at random fromU − S. In (Bernaille et al., 2006)
three classifiers are presented: k-means, a hidden Markov
model and a Gaussian Mixture Model (GMM). According
to (Bernaille et al., 2006) the GMM classifier outperforms
all other classifiers. We use the author’s GMM classifier
implementation and compare it to our proposed classifier.
Unfortunately no classifier in (Bernaille et al., 2006) is de-
signed to be trained with unlabeled samples. Figure 3 com-
pares the accuracy of our classifier withk = 8, n = 250,
and t = 400 to the GMM classifier with its optimal pa-

Manifold learning for online peer-to-peer flow classification

rameters. These graph show curves of the true positive and
negative ratios against the fraction of “undefined” flows.
From these results we can conclude that our classifier out-
performs the GMM classifier. It also performs quite well
even when the number of “undefined” flows is small.

In what follows we repeat the experiment above with no
unlabeled training flows, i.e.,S′ = ∅. This emulates a
scenario where the content parser is able to output more
labeled flows than the number of training flows needed
for the classifier. Figure 4 shows that our classifier suf-
fers almost no loss in performance and still outperforms
the GMM classifier.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
ne

ga
tiv

e
ra

tio

Undefined label ratio

GMM
Eigenmaps

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
po

si
tiv

e
ra

tio

Undefined label ratio

GMM
Eigenmaps

Figure 3.Comparison between our classifier and the GMM clas-
sifier of (Bernaille et al., 2006). Trained with2, 000 flows (1, 000

labeled) and evaluated with2, 000 flows. Graph of true negative
(upper graph) and true positive (lower graph) ratios against the
“undefined label” ratio.

6. Related work

The work most closely related to ours is (Bernaille et al.,
2006). It uses generative models to label flow applications.
Their approach does not fulfill all the classifier require-
ments presented in Section 3. More specifically, it violates
requirements (2) and (3) (refer to Section 3 for the list of
requirements). It violates requirement (2) because it does

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
ne

ga
tiv

e
ra

tio

Undefined label ratio

GMM
Eigenmaps

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
po

si
tiv

e
ra

tio

Undefined label ratio

GMM
Eigenmaps

Figure 4.Comparison between our classifier and the GMM clas-
sifier of (Bernaille et al., 2006). Trained with1, 000 flows (all
labeled) and evaluated with2, 000 flows. Graph of true negative
(upper graph) and true positive (lower graph) ratios against the
“undefined label” ratio.

not scale well on the number of flow features and it is un-
able to use important flow features such as OS fingerprints
in a principled manner, without resorting to cumbersome
hacks. It also violates requirement (3) for its inability to
learn from unlabeled flows.

Networks intrusion and anomaly detection is a well known
problem in Machine Learning (Eskin, 2000). Anomaly de-
tection is concerned with identifying patterns that can be
considered anomalous with respect to normal system be-
havior. This is clearly not our case as p2p flows are in fact
quite common and cannot be considered an anomaly.

A complementary approach to ours is to classify the role of
a host as p2p or non-p2p user according to their network
connectivity graph (Karagiannis et al., 2005). It require the
analysis to be offline. The analyzed flows/host IPs could be
incorporated in the tranning of our algorithm.

Manifold learning for online peer-to-peer flow classification

7. Conclusions and Future work

In this work we study the problem of discouraging p2p
file sharing under a scenario where flow content parsing is
too CPU intensive to be performed over all network flows.
We propose a high level framework comprised of a stan-
dard content parser and a learning classifier. We present
a set of required characteristics for a learning classifier to
countermeasure adversary attacks. We then design a man-
ifold learning classifier that conforms to these specifica-
tions in a principled manner. We show our classifier to be
more accurate than other classifiers crafted for the same
task (Bernaille et al., 2006) (K-means, HMM, and GMM).
We finally show that the latter classifiers fail to meet some
of the required design principles of online p2p flow classi-
fication.

Future work. Apply our methodology to Internet traces
that contain features such as OS fingerprints, IP addresses,
packet sizes and directions, and TCP flags.

Appendix

In this appendix we look at our classifier’s sensitivity to
the number of basis vectorsn. Figure 5 show the accuracy
of our classifier forn ∈ {100, 150, 200, 250, 300} when
evaluated over the labeled training setS′. From the graph
we conclude that a greatern gives more accurate results.
This is expected as we are evaluating over the labeled train-
ing data. But we would liken to be the smallest possible
to avoid overfitting the training data and losing generality.
The ballance between accuracy and a lower value ofn is
achieved whenn = 250. This motivates our choice of
n = 250 as the best parameter.

References

Belkin, M., & Niyogi, P. (2002). Using manifold stucture
for partially labeled classification.NIPS(pp. 929–936).

Bernaille, L., Teixeira, R., & Salamatian, K. (2006). Early
application identification. Conference on Future Net-
working Technologies (CONEXT’06).

Cisco Systems (2005). Network based application recog-
nition performance analysis. Cisco 2611, 3745, 7206,
7301, 7505 series routers. Cisco Systems white paper
number 0900aecd8031b712.

Dalvi, N., Domingos, P., Mausam, Sanghai, S., & Verma,
D. (2004). Adversarial classification.Proceedings of the
ACM SIGKDD conference(pp. 99–108). New York, NY.

Eskin, E. (2000). Anomaly detection over noisy data using
learned probability distributions.ICML.

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
ne

ga
tiv

e
ra

tio

Undefined label ratio

k=8, n=100, t=400
k=8, n=150, t=400
k=8, n=200, t=400
k=8, n=250, t=400
k=8, n=300, t=400

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ru

e
po

si
tiv

e
ra

tio

Undefined label ratio

k=8, n=100, t=400
k=8, n=150, t=400
k=8, n=200, t=400
k=8, n=250, t=400
k=8, n=300, t=400

Figure 5.Comparison between distinct number of basis vectors
(n) evaluated over the training setS′. We can see from the graph
thatn = 250 is the best choice for parametern whenk = 8 and
t = 400. Graph of true negative (upper graph) and true positive
(lower graph) ratios against the “undefined label” ratio.

Karagiannis, T., Broido, A., Fabloutsos, M., & claffy, K.
(2004). Transport layer identification of P2P traffic.Pro-
ceedings of the ACM/SIGCOMM Internet Measurement
Conference(pp. 25–27). Taormina, Sicily, Italy.

Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005).
BLINC: multilevel traffic classification in the dark.Pro-
ceedings of the ACM SIGCOMM(pp. 229–240).

Liu, T., Moore, A., Gray, A., & Yang, K. (2004). An inves-
tigation of practical approximate nearest neighbor algo-
rithms. NIPS(pp. 825–832).

Moore, A. W., & Zuev, D. (2005). Internet traffic classifi-
cation using bayesian analysis techniques.Proceedings
of the ACM SIGMETRICS(pp. 50–60). New York, NY,
USA.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimen-
sionality reduction by locally linear embedding.Science,
290, 2323–2326.

Manifold learning for online peer-to-peer flow classification

Saul, L. K., Weinberger, K. Q., Ham, J. H., Sha, F., &
Lee, D. D. (2006). Spectral methods for dimensional-
ity reduction. In O. C. B. Schoelkopf and A. Zien (Eds.),
Semisupervised learning. MIT Press.

Sen, S., Spatscheck, O., & Wang, D. (2004). Accurate,
scalable in-network identification of P2P traffic using ap-
plication signatures.Proceedings of the 13th Interna-
tional World Wide Web Conference(pp. 17–22). New
York City, NY.

Taylor, R. (2005). Piracy on Campus: An overview of the
problem and a look at emerging best practices to reduce
online theft of copyrighted works.Presented to the U.S.
House of Representatives Subcommittee on Courts, the
Internet, and Intellectual Property. Washington, DC.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000).
A global geometric framework for nonlinear dimension-
ality reduction.Science, 290, 2319–2323.

Weinberger, K. Q., & Saul, L. K. (2004). Unsupervised
learning of image manifolds by semidefinite program-
ming (pp. 988–995.). Los Alamitos, CA, USA: IEEE
Computer Society.

Zalewski, M. (2006). P0f v2 passive OS fingerprinting tool:
http://lcamtuf.coredump.cx/p0f.shtml.

