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ABSTRACT

In this work we study the MySpace friendship graph and

provide strong evidence that short account activity lifespans

are directly responsible its (truncated) power-law degree dis-

tribution. The activity lifespan is the time elapsed since

the creation of the account until the user’s last login time.

Our observations from accounts that have the same lifespans

show their degree distribution to be well approximated by a

lognormal (with a fairly light tail). Using the Central Limit

Theoremwe argue that even if MySpace users independently

added friends at random we would still observe the same de-

gree distributions. The key insight in our work is to look

at the social graph as a live system where users can add or

remove friends only when they are active.

1. INTRODUCTION

On-line social network (OSN) friendship graphs have
been the subject of a large body of work in the liter-
ature complex networks. Arguably, the most studied
metric of such graphs is their degree distribution. In
this work we randomly sample nearly 400,000 MySpace
accounts and show that many users have very short ac-
tivity lifespans. The activity lifespan is the time elapsed
since the creation of the account until the user’s last lo-
gin time. This short lifespans have a profound impact
on the degree distribution. Our data provides evidence
that the double-Pareto (refer to [12] for the definition
of double-Pareto) shaped degree distribution observed
in MySpace [3] is a consequence of a mixture of lognor-
mal distributions with exponentially distributed activ-
ity lifespans.

MySpace is one of the largest on-line social networks
to date. MySpace has approximately 200 million ac-
counts (users) geographically distributed around the globe.
The choice of MySpace for our study comes from two
valuable records available in most of MySpace accounts:
The date in which the account was created and the
user’s last login date. By randomly sampling MySpace
accounts we observe that:

• The distribution of account activity lifespans de-

cays at least as fast as an exponential.

• The friendship degree is lognormally distributed
within accounts with the same lifespan. We com-
ment on the implications that this could be a direct
consequence of the Central Limit Theorem.

• The friendship graph degrees follow a (truncated)
double-Pareto distribution. Moreover, borrowing
from Reed [12], we argue that this heavy tailed
distribution is a direct consequence of the previous
two observations above.

This work differs from previous OSN works in that we
look at the social graph as a live system where users can
add or remove friends only when they are active. This
work is also exploratory in nature. We answer a number
of questions but we also leave many others open.

This work is organized as follows. In Section 2 we
review the data collected from MySpace. In Section 3
we analyze the data collected from MySpace. Section 4
uses the Central Limit Theorem in order to show that it
is possible to obtain the degree distributions seen in Sec-
tion 3 assuming that MySpace users independently add
friends at random. We show that a simple stochastic
process can approximate the degree distributions with-
out making assumptions on how friends connect to each
other.

2. MEASUREMENT METHODOLOGY

Unfortunately, studying such a large and active so-
cial network has its drawbacks. The massive number
of users combined with MySpace’s stringent rules on
crawling its network forces researchers to rely on statis-
tics from incomplete datasets. We collect data from
MySpace by sampling, uniformly at random, user pro-
files and their blog entries. An entry in our dataset is
comprised of user ID, IDs of all his or her friends, the
date in which the account was created, and the user’s
last login date. Our data was collected using two prob-
ing phases: In the first phase, denoted “fast probing”,
obtains a (time) snapshot of the MySpace graph. In 4
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days we randomly sampled 1 million IDs where 70,000+
correspond to valid public accounts. This measurement
had to be shut down due to complaints from MySpace.
In the second phase, denoted “slow probing”, we ob-
tain 312,713 valid public MySpace accounts, chosen
uniformly at randomly in the account space, during 7
months of measurements.

The data collected in the “fast probing” phase is used
for our snapshot-sensitive analysis, e.g. the lifespan dis-
tribution. As we are not too interested in the tail of
these distributions, we hypothesize that 70,000+ sam-
ples are enough to obtain good estimates. The data
collected in the “slow probing” phase is used for all
snapshot-insensitive analysis such as the distribution of
friends from accounts with a given lifespan. The results
obtained from the fast probing phase is also used to
double check the results obtained in the slow probing
phase. In this preliminary work we hypothesize that ac-
counts which are closed before the network is sampled
do not interfere with our conclusions. We also hypoth-
esize that private profiles, also reported in [3], (from
which we cannot obtain friends information) do not af-
fect our results. We leave as future work the task to
collect data that can verify these hypotheses.

One of the challenges of this work is to perform statis-
tical analysis using relatively few samples. The quality
of our conclusions depends directly on the quality of
our estimates. In our experiments we sample nearly
0.25% of all valid users. In Appendix A we analyze the
impact of the incomplete data over our estimates. In
what follows we describe the statistics obtained using
this data.

3. MYSPACE GRAPH DEGREES

In this section we look at the impact of lifespans over
the MySpace friendship graph. The friendship graph
G = (V,E) is an undirected graph where vertices are
MySpace accounts. Two accounts u and v have an edge
in G if u and v are friends in MySpace. In what follows
we look at account lifespan and vertex degree distri-
butions. While the vertex degree distribution of social
graphs has been extensively studied in the literature, in-
cluding a MySpace study [3], we show crucial statistical
properties that have escaped the attention of previous
works.

3.1 Measures of graph growth an activity

We introduce three statistics that measure the growth
(in terms of new accounts) and how active MySpace
users are:

• Account lifespan: Time between the creation of
an account and the last time the user logged in.

• Account age: Time between the creation of an
account and when it is probed (recorded in our

trace).

• Account inter-login time: Time between two
consecutive logins into the same account.

These statistics have a deep impact on how the friend-
ship graphs grows and its vertex degree distribution.
Figure 1 shows the complementary cumulative distribu-
tion function (CCDF) of MySpace lifespans where the
y-axis is shown in log scale. We see that the majority
of users in MySpace are active for a very short period
of time. The CCDF of lifespans can be divided into two
parts. The first part with lifespans < 26.5 months follow
an exponential distribution (straight line in log-scale).
This first part accounts for more than 80% of the ac-
counts. The second part with lifespans ≥ 26.5 months
follow a parabola (exp(− lifespan2)) in log-scale. The
fast tail decay is, in part, a consequence of the trun-
cation of the distribution, as MySpace was launched in
August 2003 and the data was collected in March 2009
(65 months later). The shaded area in Figure 1 shows
the fitted distributions and their divisions.

Figure 1: Empirical complementary cumulative his-

togram of user activity lifespans. The red points rep-

resent the lifespan distribution observed in our data and

the lines correspond to the curves shown in the equa-

tions below the curve. More than 80% of the probability

mass follows an exponential law (the remaining 20% de-

cays faster than an exponential).

Figure 1 may leave the false impression that exponen-
tial lifespans are a direct consequence of the exponen-
tial growth of the graph, i.e., lifespans are exponentially
distributed because account ages are exponentially dis-
tributed. This is not the case for MySpace. Figure 2
shows the distribution of account ages (in months). Note
that, unlike lifespans, at least 80% of the MySpace ac-
counts (accounts newer than 37 months) are the result
of linear growth rates. Accounts older than 37 months
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are the part of the graph that grew exponentially during
MySpace’s early years. Less than 20% of the vertices
were created during this exponential growth period.
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Figure 2: Fraction of MySpace accounts with age =

(<Time of scan> - <Member Since>). After an expo-

nential growth from 2003 (MySpace’s launch) to 2005,

the number of new accounts transitions to linear growth.

We believe that account lifespans are one of the most
important statistics that one can obtain from an OSN
such as MySpace. We also argue that account ages are
not as relevant. This is because friends are not au-
tomatically added in MySpace. Users must log into
their accounts in order to add friends. Therefore, an
account created and later abandoned cannot play a sig-
nificant role in the graph evolution after it is abandoned.
We can sample such accounts because MySpace never
deletes accounts due to inactivity.

The lifespan distribution brings us to another ques-
tion: How frequently do users log into their accounts?
Note that one could generate the same lifespan statis-
tics if users logged in just once. In order to answer
this question we need to estimate the time between two
consecutive logins into the same account (inter-login
times). Assuming that our probes arrive at points in
time that are distributed uniformly at random, we can
estimate inter-login times using the account’s last lo-
gin time and the time of the probing. It is clear that
we are more likely to probe long inter-login times than
short ones. This is known as the inspection paradox.
Appendix B presents a maximum likelihood estimator
that is used to obtain the graph in Figure 3. In our
estimates we artificially include a constraint that there
are no inter-login times greater than 3 years in order
to speed the computation. Unfortunately, we can only
rely on our estimates as we do not have access to the
ground truth. However, the results shown in Figure 3
seem to agree with our intuition. First, we observe that
most accounts are logged in quite frequently. This is
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Figure 3: CCDF of estimated inter-login times. Note

that a heavy tail is expected as many users abandon their

MySpace accounts. The sharp drop at the end of the tail

is due to an artificial constraint that there are no inter-

login times greater than 3 years.

a sign that users login quite often during the account
lifespan. Also, most accounts that are not active in the
span of one year are not likely to be active in less than
three years. This is expected as accounts inactive for
more than one year are likely to have being abandoned.
Figure 3 also shows the distribution obtained from the
difference between the time of the probing and the ac-
count’s last login time, which is the input data used in
our estimator.

3.2 Conditional friend degree distribution

Another important statistic missing from the litera-
ture is the degree distribution of accounts with the same
lifespan, i.e., the degree distribution conditioned on the
lifespan. Figure 4 shows QQ-plots that test if the de-
gree distributions of accounts with 3 to 65 months of
lifespan are lognormally distributed. Figure 4(a) shows
all 63 QQ-plot curves. The straight line is the per-
fect match to a lognormal distribution. Because many
curves in Figure 4(a) intersect, we opt to also show,
in Figure 4(b), the heatmap of Figure 4(a) where col-
ors (from blue to yellow) indicate the density of over-
lapping points (from low to high, respectively). From
these graphs we see that all these distributions can be
well described by a lognormal law. Note that both axes
in Figure 4 are not the number of friends as seen in
a regular QQ-plot. This is an artifact we use to get
around the fact that accounts with different lifespans
have different lognormal parameters. If plotted in their
regular scale, these curves are not comparable. We in-
stead apply a simple transformation observing that the
log of a lognormal random variable is Normally dis-
tributed: Apply the log to the data, subtract the result
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Figure 4: QQ-plots of the degree distributions from

accounts with the same number of months of activity

lifespan. These graphs plot 63 curves that correspond

to the degree distributions of 3 months of activity until

up to 65. The theoretical quantiles are given by the t-

Student distribution (tests if the samples come from a

standard Normal).

from their sample average, and divide it by the sample
standard deviation. Thus, if the original data is lognor-
mal, the new transformed (“normalized”) data must be
distributed according to a t-Student distribution whose
degrees of freedom is the number of data points. In the
graphs of Figure 4 we see that these distributions can
be well described by a lognormal law. The only three
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Figure 5: Log-log plot of the CCDF of friends for ac-

counts with lifespans 0 (less than one month), 1, 2, and

10 months.

distributions that are not well described by a lognor-
mal are (unsurprisingly, as seen in Section 4) the three
degree distributions from accounts that have less than
two months of activity. These three distributions are
shown in Figure 5 along with a “typical” distribution
among the ones analyzed in the QQ-plot of Figure 4 (10
months of activity). In Figure 5 we see that the distribu-
tions from accounts with short lifespans look closer to a
power-law than a lognormal-law. Section 4 presents one
possible mathematical reason behind this phenomenon.
Another likely cause are bots (programs that automat-
ically send friend requests to other MySpace users from
bogus accounts). MySpace closely monitors its users.
If an user behaves suspiciously, MySpace blocks the ac-
count until the user proves to be legitimate. Thus, we
expect to find some user accounts with short lifespans
and a large number of friends.

Estimates of the lognormal parameters (µ, σ) for each
lifespan value (in months) can be found in the graph of
Figure 6. Note that parameter µ seems to grow linearly
with T for lifespans greater than 4. On the other hand,
parameter σ seems to be constant for lifespans greater
than 4. In what follows we combine the above results to
understand the graph degree distribution of MySpace.
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Figure 6: Empirical average and standard deviation

of friend degree given account lifespan T shows a linear

increase for T > 10 while the standard deviation remains

constant.

3.3 Assembling the puzzle: The friend degree
distribution

Reed [12] shows that the convolution of lognormally
distributed random variables with parameters (Tµ, Tσ2)
given a fixed lifespan T with T itself being exponen-
tially distributed results in a distribution that can be
approximated by a double-Pareto distribution. The
double-Pareto distribution is characterized by its graph
in log-log scale: Two straight lines connected through a
“knee”. The friend degree distribution graph of MySpace
shown in Figure 7 is an excellent example of this shape.
The same shape is also present in a previous measure-
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ment study of MySpace [3].
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Figure 7: Empirical Complementary cumulative distri-

bution of the number of friends in MySpace accounts.

The double-Pareto shape of MySpace’s degree distri-
bution is not surprising according to the statistics seen
in this section as the degree distribution is a convolution
of:

1. Exponential lifetimes (Figure 1) (where active users
log into their accounts quite frequently, as seen in
Figure 3) with

2. the lognormal distribution of friends given a fixed
lifespan (Figure 4) with parameters (Tµ, σ2) (Fig-
ure 6).

The standard deviation of the lognormals is the main
difference between the statistics presented in this sec-
tion and Reed’s model [12]. In Reed’s model the stan-
dard deviations are σ

√
T whereas in MySpace they are

just σ. While this is not a trivial difference, the re-
sulting distribution in this case is also double-Pareto
shaped as seen in Figure 7.

3.4 Related work

Closely related to the above observation is the obser-
vation of Huberman and Adamic [5], in 1999, that the
exponential growth of the World Wide Web (WWW)
graph could explain its power law degree distribution.
A webpage, like a MySpace user, adds and removes links
(“friends”). But note that the model in Huberman and
Adamic [5] implicitly assumes that most webpages un-
dergo sustained changes (addition and deletion of links)
from the moment they were created until when the page
is sampled. This is equivalent to assume that webpages
are never abandoned. While this is a fair assumption
about the WWW in 1999, this assumption does not
apply to MySpace, as many MySpace users create ac-
counts and quickly abandon them. In MySpace, Hu-
berman and Adamic’s assumption of exponential graph
growth is replaced by the exponential lifespans (during

which MySpace users are able to include and remove
friends). Mitzenmacher [11] has proposed a mechanism
similar to Reed’s to describe Web file sizes. Seshadri et
al. [13] has proposed a similar mechanism to describe
the duration of cell phone calls which makes assump-
tions about the wealth of the callers. Different from the
above works, we are able to empirically verify all the
required conditions to generate a double-Pareto distri-
bution. In what follows we provide a model that gener-
ates the statistics seen in this section but does not make
assumptions on how users connect to each other in the
graph.

4. MYSPACEDEGREEDISTRIBUTIONSAND

THE CENTRAL LIMIT THEOREM

It is well known in the literature of complex net-
works that there are many possible generative graph
models that entail graphs with the same heavy-tailed
degree distributions [9]. The literature has many ex-
amples of these generative graph models. The reader
finds in Liu et al. [8] a good reference for the connection
between graph degree distributions, generative models,
and heavy-tails. Also, we can refer the reader to Mitzen-
macher [10] for a survey of generative models specific to
power-law distributions.

In this section we do not propose a new model to gen-
erate the entire MySpace graph. Rather, we provide a
model (stochastic process) that approximates the de-
gree distributions seen on MySpace and does not need
assumptions on how users connect to each other in the
graph. The following model is similar to the one pro-
posed by Huberman and Adamic [5] for the degree dis-
tribution of the WWW graph. Let Xd be a random
variable that denotes the number of friends of a ran-
domly chosen user with lifespan of d days. Our model
assumes that

Xd = FdXd−1 (1)

where Fi, i = 1, 2, . . . are independent random variables
with finite mean and variance and X0 = 1 (MySpace
users start with “Tom” (MySpace’s creator) as their
friend). Applying the log to both sides of equation (1)
we have

log(Xd) =

d−1
∑

i=1

log(Fi). (2)

The Central Limit Theorem (CLT) states that an in-
finite sum of independent random variables, where no
random variable dominates the sum1 in equation (2),
converges to the Normal distribution [14]. A direct con-
sequence of the CLT is that the Normal distribution
1It is easy to see that as the number of elements in sum
goes to infinity the assumption that “no random variable
dominates the sum” can be replaced by the assumption that
each Fi has finite mean and variance.
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is stable, i.e., the sum of two Normal distributions is
also Normal. The assumption that no random variable
dominates the sum is actually more important than the
assumption of an infinite sum [14]. So, it is reasonable
to expect that if no sample of the log(Fi)’s dominates
the sum, even finite sums can be well approximated
by a Normal distribution. This simple model provides
a plausible reason (given a set of reasonable assump-
tions) that is able to explain the lognormals seen in the
conditional degree distributions in Section 3.2. It is im-
portant to note that this model makes no assumptions
on how friends connect to each other.

It is easy to see that for small values of d it is likely
that one of the samples (log(F̂i), i = 1, . . . , d− 1) dom-
inates the sum. This is another possible explanation
(besides the presence of bots) for the graphs in Figure 5.
In fact, it is not surprising that Figure 5 indicates that
the distribution from accounts with a 2-month lifespan
is much closer to a lognormal than the distribution of
accounts with 1 or 0 month lifespans. The model in
equation (1) assumes that MySpace users choose friends
independently. As the friendship graph in MySpace is
undirected, this assumption is not entirely true. But it
is reasonable to assume that two randomly chosen users
add and remove friends independently. This is enough
independence to explain the good lognormal approxi-
mations seen in Figure 4. As we have seen in Section 3,
the double-Pareto degree distribution of the MySpace
friendship graph follows from the exponential lifespans
and the linear increase in the average of the lognor-
mals over time. It is fair to say that the multiplicative
nature of equation (1) is a type of “preferential attach-
ment” [1]. However, it is worth noting that equation (1)
makes no assumption about how the graph is going to
be constructed by its agents (in this case, agents are
MySpace users).

5. SUMMARY & CONCLUSIONS

In this work we study the MySpace friendship graph
and provide strong evidence that short account activity
lifespans are the reason behind its (truncated) power-
law degree distribution. In Section 3 we see that ac-
counts with the same lifespans have their degree dis-
tribution following a lognormal-law (with a fairly light
tail). In Section 4 we use the Central Limit Theorem in
order to show that it is possible to obtain these degree
distribution even if MySpace users independently added
friends at random. We show that a simple stochastic
process can approximate the degree distributions with-
out making assumptions on how friends connect to each
other.

APPENDIX

A. THE IMPACT OF SAMPLING ON OUR

ESTIMATES

This section is dedicated to explain the methodology
used to substantiated our claims and describe the im-
plications of working with incomplete (sampled) data.
The following exposition is quite straightforward but
needed to ensure us that our conclusions are sound.
Fitting distributions to sampled data is somewhat of
a controversial topic [4]. In the complex networks liter-
ature heavy-tailed distributions are often found in ob-
served (incomplete) data: links in Web pages [1, 5], file
sizes [11], among many others. This comes as no sur-
prise as, according to the theory of stable laws, heavy-
tailed distributions are easily generated from a number
of stochastic processes. In what follows we analyze the
estimation error and the maximum likelihood estimate
for our data.

A.1 Truncated tail

The study of heavy-tailed distributions requires a brief
warning about the tail of the distribution. In most, if
not all, scenarios these tails are truncated. A good ex-
ample is the distribution of the energy of earthquakes.
While, from the sampled data already collected, such
distribution appears to be heavy-tailed, it is clear that
the tail of the distribution is not truly “heavy” as there
is a limit to the amount of energy that can be released
from the Earth’s interior [7]. Our application is no ex-
ception and has an obvious truncation point (the num-
ber of users in MySpace). In what follows we refer to
the “tail” of our distributions as all points that are “far
from zero” but smaller than the truncation point. While
there is great inaccuracy in measuring the tail [4], and
our measurements are no exception, there is still much
that can be said about the tail. In what follows we show
how this is possible.

A.2 Estimation error

Let θi be the fraction of MySpace accounts with i
friends and θ = {θi|i = 1, . . . }. Let

Θd =
∞
∑

i=d+1

θi,

be the fraction of accounts with more than d friends.
Let Y = {Yi}N

i=1 be the (incomplete) raw data ob-
tained from N sampled MySpace accounts. We define
the sampled distribution to be the distribution of friends
obtained from the incomplete dataset Y. Let Td(Y) be
an unbiased estimate of Θd, i.e., E[Td(Y)] = Θd. Also
let

T ⋆
d = argmin

Td

E[(Θd − Td(Y))
2
],

i.e., estimator T ⋆ has the smallest mean squared error
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among all unbiased estimators (we assume Hajék reg-
ularity [6]). In what follows we answer the following
questions:

(1) How accurate can T ⋆ be?

(2) What is the most likely shape of the original dis-
tribution?

For now we assume that the only information about θ

contained in the accounts is the number of friends. If ac-
counts display only the number of friends (not their IDs)
and as we sample accounts independently at random,
sampling accounts is equivalent to sampling degrees di-
rectly from θ. Let #(Y == d) denote the number of
sampled accounts with d friends. We have

P [#(Y == d) = k] = θk
d(1 − θd)

N−k.

From the above it is easy to see that the following in-
equality holds

E
[

(Θd − T (Y))
2
]

≥ Θd(1 − Θd)

N
. (3)

The above inequality is a straightforward application
of the Cramér-Rao inequality [2]. And T ⋆ obtains the
sampled distribution making the bound in eq. (3) tight.
The above analysis is quite trivial but it has a remark-
able impact on our ability to draw conclusions from our
sampled data. In order to exemplify the implications
of equation (3) over the accuracy of our estimates, we
assume, for the sake of argument, that Θd = d−µ with
µ ≥ 1 and d = 1, . . . , i.e., distribution θ is Pareto with
scale=1 and shape µ ≥ 1. The empirical distribution of
the number of friends in our MySpace traces has shape
parameter µ̂ = 1.47 at the tail. In order to simplify our
analysis we use another metric of accuracy, the normal-
ized root mean squared error (or NRMSE):

NRMSE(T ) =

√

E
[

(Θd − T (Y))
2
]

Θd

≥
√

dµ − 1

N
,

recall that N is the number of sampled MySpace ac-
counts. The inequality in the equation above comes
from equation (3). The NRMSE is a metric that gives
the average error of estimator T as a fraction of the
quantity being estimated. With N = 4 × 105 (400,000
sampled accounts) we have

NRMSE(T ) ≥
√

(dµ − 1)/(4 × 105).

Thus, any unbiased estimate of Θ10,000 has an average
NRMSE of at least 1.38 ·Θ10,000. This reasonably large
error is one of the reasons why fitting a distribution
to the tail of a sampled distribution is a controversial
topic. Please refer to Gong et al. [4] for an interest-
ing look at the difficulty in estimating the tail of Web
file size distributions. An interesting question for future
work is whether the poor accuracy of T ⋆ implies that

we cannot be confident about the shape of the origi-
nal distribution. In what follows we estimate the likely
shape of the distribution.

A.3 Maximum likelihood estimation

Here we show the trial task of estimating the likely
shape of our sampled distributions. We look at the dis-
tribution that most likely generated the data finding the
most likely non-parametric distribution that generated
the sampled data. We wish to find θ̂ that maximizes
the probability that Y = y, i.e., we wish to find the
maximum likelihood estimate

θ̂ = argmax
θ

P [Y = y |θ].

The maximum likelihood estimate of the above Bino-
mial random variable is θ̂d = 1/#(y == d), i.e., θ̂ is
the sampled distribution of y. Note that #(y == d)
denotes the number of sampled accounts with d friends.
Figure 7 shows the empirical distribution of friends in
our MySpace traces. The rather trivial conclusion is
that the empirical curve seen in Figure 7 is the most
likely distribution of friends in MySpace.

A.4 Changes to the original (incomplete) data

Zero friends: When someone joins MySpace they
have the creator of MySpace “Tom” as their friend.
Thus, there are very few accounts with zero friends.
For the sake of simplicity we ignore accounts with zero
friends.

B. USER INTER-LOGIN TIME DISTRIBU-

TION

Let Y be the time (in days) between when an account
is probed and the last time it was logged in. If the
difference in time is less than 24 hours then Y = 1, if
the difference in time is between 24 and 48 hours then
Y = 2, and so forth. Assume that, collectively, users
login an infinite number of times. Let X be the time
(in days) between two consecutive logins of an user. In
what follows we assume that accounts do not go stale
(in reality many users abandon their accounts).

If we assume that the time we sample the account is
distributed uniform at random, the probability of land-
ing on an interarrival time of size x is

P [Y = i|X = j] =

{

0 if j < i
1/i otherwise

. (4)

The probability that we will sample an interval X of
size j is

jP [X = j]
∑∞

k=1 kP [X = k]
. (5)
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Putting equations (4) and (5) together we have

P [Y = i] =

∞
∑

j=i

1

j

jP [X = j]
∑∞

k=1 kP [X = k]
=

P [X ≥ i]

E[X]

Thus we can recursively calculate P [X ≥ i] from:

E[X] =
1

P [Y = 1]
, and ,

P [X ≥ i] = E[X]P [Y = i].

As we only have an estimate of P [Y = i] and not its
true value, the above estimate is subject to sampling
noise. Indeed, using the above estimator in our dataset
we obtain a number of negative P [X = j] values. In
order to obtain better estimates, we use the maximum
log-likelihood estimator

argmax
{P [X=j]}

∑

∀i

yi

1 − ∑i−1
j=1 P [X = j]

∑∞
k=1 kP [X = k]

,

where yi is the number of samples of Y with value i.
We also enforce the constraints 0 ≤ P [X = j] ≤ 1, j =
1, 2, . . . and

∑

∀j P [X = j] = 1.
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