

Types of networks

Directed

incoming and outgoing edges can be queried

- E.g.:
- YouTube

Undirected

E.g.:

- OSNs (Facebook, MySpace, etc.)
- Computer networks (in general)
- Family ties (e.g. DNA mutations)

Directly observable characteristics

graph: G=(V,E)

Compute:

$$h(V) = \sum_{\forall v \in V} w(v)$$
$$f(E) = \sum_{\forall (u,v) \in E} g(u,v)$$

vertex/edge labels

b

Graph measurements

Can pick up vertex characteristics by querying

• Web, FaceBook, YouTube, ...

Resource constraints: too expensive to query all vertices

- size (100M+ vertices)
- query rate restrictions

How then? sampling/crawling

• Leslovec et al, 2006, Mislove, et al 2007, ...

Random Sampling v.s. Crawling

vertex sampling

edge sampling

snowball sampling

random walk sampling

Random sampling

Crawling

Vertex sampling, snowball sampling

Orkut data set (Mislove 2007), 3M vertices, 200M edges

Random walks

- random walk (RW)
 - simple to implement
 - in steady state RW visits edges uniformly at random
 - RW ≡ random edge sampling without independence
- ▶ *v* − vertex in undirected graph G
 - deg(v) degree v
 - \circ /*E*/ total number of edges

P[v visited in RW] = deg(v)/|E|

• $\theta_i = \pi_i \times \text{avg. degree}/i$

obtains unbiased estimates of

$$h(V) = \sum_{\forall v \in V} w(v)$$

$$f(E) = \sum_{\forall (u,v) \in E} g(u,v)$$

Estimation from sampling

- random vertex sampling (uniform + independent)
 - unbiased
 - not always possible
 - high overhead
 - MySpace 10% of ID space populated
 - Orkut 7% of ID space populated
- snowball sampling
 - **biased** (but under certain conditions bias can be removed)
- random walk sampling
 - Markov Chain Monte Carlo estimation
 - estimator asymptotically unbiased
 - e.g. RDS (Heckathorn 1997)

Sampling error - independent degrees

degree distribution θ_i ; B samples

error metric: Normalized root Mean Squared Error

Simulation 1, Orkut Random Walk vs. Random vertex sampling

0.3% vertices sampled

- random vertex sampling
- random walk sampling

Random Walk drawback

Multiple dependent random walks : Frontier Sampling (FS)

B – sampling budget

Let $S = \{v_1, v_2, \dots, v_m\}$ be a set of *m* vertices

(1) start from $v_r \in S$ w.p. $\propto \deg(v_r)$

(2) walk one step from v_r

(3) add walked edge to E' and update v_r

(4) return to (1) (until m + | E' | = B)

FS facts

- centrally coordinated
- when stationary
 - edges sampled uniformly
 - vertices sampled \propto vertex degree
- like a RW, FS estimates:

$$h(V) = \sum_{\forall v \in V} w(v)$$

$$f(E) = \sum_{\forall (u,v) \in E} g(u,v)$$

FS: An *m*-dimensional random walk

Simulation scenarios

- Flickr graph (Mislove 2007), 1.7M vertices, 5M edges.
 Largest connected component = 1.6M vertices
- LiveJournal graph, 5M vertices, 77M edges
- **Objective:** Estimate the fraction of vertices with in-degree i

FS v.s. Independent sampling

- LiveJournal graph
- Budget = 1% vertices

FS almost as good as independent edge sampling!

FS v.s. RW

- Flickr graph
- Budget = 1% vertices

FS more accurate than random walks

Sample paths (whole graph)

- > Plot evolution $\hat{\theta}_1(n)$, where n = number of steps
- 4 sample paths = 4 curves

Controlled experiment

- ▶ BA(k) Barabási-Albert graph with average degree k
- Budget = 10% vertices

Controlled experiment (cont)

- ▶ Plot evolution $\hat{\theta}_{10}$, where *n* = number of steps
- 4 sample paths = 4 curves

Q: could we estimate clusters? (tentative)

the graph conductance (normalized cut)

can be estimated from the Dirichlet q

$$R_S(f) = \frac{\sum_{\forall (u,v) \in E} (f(u) - f(v))^2}{\sum_{\forall u \in S} f(u)^2 \deg(u)}$$

Dirichlet (experiment): • f(u) = 0 if id(u) = odd• f(u) = 1 if id(u) = evenGraph: Flickr (LCC) |V|/10 steps true R_s(f) = 0.00103 estimated: R_s(f) = 0.00103 FS: NMSE = 0.31 RndEdge: NMSE = 0.18

Frontier sampling (FS)

must be centrally coordinated?

Conclusions

- Random walks are promising approach
- Real world graphs demand new random walk strategies
- Multiple independent random walks not enough
- Dependent random walks are a powerful and unexplored

A lesson from the past

the Portuguese

"World Map" in 1459

- proved incomplete(Columbus et al. 1492)
- wrong proportions

Lesson:

understanding our "world" requires principled measurement methods

The Fra Mauro world map (1459)