Our world view

- world view is biased
- depends
- where yo

Research to enable unbiased view of the "world"

- your network connections
- the network structure

Saul Steinberg's View of the World from 9th Avenue

Types of networks

Directed

incoming and outgoing edges can be queried
E.g.:

- YouTube
- Livejournal

Twitter
ArXiv

Undirected

E.g.:

- OSNs (Facebook, MySpace, etc.)
- Computer networks (in general)
- Family ties (e.g. DNA mutations)

Directly observable characteristics

graph: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

Compute:

$$
\begin{aligned}
& h(V)=\sum_{\forall v \in V} w(v) \\
& f(E)=\sum_{\forall(u, v) \in E} g(u, v)
\end{aligned}
$$

vertex/edge labels
bank transactions

money transfers

Facebook network

vertex degrees

Graph measurements

Can pick up vertex characteristics by querying

- Web, FaceBook, YouTube, ...

Resource constraints: too expensive to query all vertices

- size (100M+ vertices)
- query rate restrictions

How then? sampling/crawling

- Leslovec et al, 2006, Mislove, et al 2007, ...

Random Sampling v.s. Crawling

- vertex sampling

- edge sampling

- snowball sampling

- random walk sampling

Crawling

Vertex sampling, snowball sampling

- Orkut data set (Mislove 2007), 3M vertices, 200M edges

Snowball sampling highly biased

Random walks

- random walk (RW)
- simple to implement
- in steady state RW visits edges uniformly at random
- RW \equiv random edge sampling without independence
v v - vertex in undirected graph G
- $\operatorname{deg}(v)$ - degree v
- $|E|$ - total number of edges
$\mathrm{P}[v$ visited in RW] $=\operatorname{deg}(v) /|\mathrm{E}|$
- $\theta_{i}=\pi_{i} \times$ avg. degree $/ i$

- obtains unbiased estimates of

$$
\begin{aligned}
& h(V)=\sum_{\forall v \in V} w(v) \\
& f(E)=\sum_{\forall(u, v) \in E} g(u, v)
\end{aligned}
$$

Estimation from sampling

- random vertex sampling (uniform + independent)
- unbiased
- not always possible
- high overhead
- MySpace - 10\% of ID space populated
- Orkut -7\% of ID space populated
, snowball sampling
- biased (but under certain conditions bias can be removed)
- random walk sampling
- Markov Chain Monte Carlo estimation
- estimator asymptotically unbiased
e.g. RDS (Heckathorn 1997)

Sampling error - independent degrees

degree distribution $\theta_{i} ; B$ samples

- error metric: Normalized root Mean Squared Error

$$
\operatorname{NMSE}(i)=\frac{\sqrt{E\left[\left(\hat{\theta}_{i}-\theta_{i}\right)^{2}\right]}}{\theta_{i}}
$$

- random vertex sampling
θ head: GOOD θ tail: BAD

$$
\operatorname{NMSE}(i)=\sqrt{\left(1 / \theta_{i}-1\right) / B}
$$

random w Power-law tails more

$$
\begin{aligned}
& \text { accurate with RW } \\
& \operatorname{NMSE}(i)=\sqrt{ }\left(1 / \pi_{i}-1\right) / B, \quad i>0, \\
& \theta_{i}=\pi_{i} \times \text { avg. degree } / i
\end{aligned}
$$

Simulation 1, Orkut Random Walk vs. Random vertex sampling

0.3% vertices sampled

- random vertex sampling
- random walk sampling

Random Walk drawback

Consider the following (extreme) thought experiment:
random walk
\mathbf{A} and \mathbf{B} are

Multiple dependent random walks : Frontier Sampling (FS)

B - sampling budget

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a set of m vertices
(1) start from $v_{r} \in S$ w.p. $\propto \operatorname{deg}\left(v_{r}\right)$
(2) walk one step from v_{r}
(3) add walked edge to E^{\prime} and update v_{r}
(4) return to (1) (until $m+\left|E^{\prime}\right|=B$)

FS facts

- centrally coordinated
- when stationary
- edges sampled uniformly
- vertices sampled \propto vertex degree
- like a RW, FS estimates:

$$
\begin{aligned}
& h(V)=\sum_{\forall v \in V} w(v) \\
& f(E)=\sum_{\forall(u, v) \in E} g(u, v)
\end{aligned}
$$

FS: An m-dimensional random walk

Graph G
Frontier Sampling Discrete-time Markov Chain

Simulation scenarios

- Flickr graph (Mislove 2007), 1.7M vertices, 5M edges. Largest connected component $=1.6 \mathrm{M}$ vertices
- LiveJournal graph, 5M vertices, 77M edges
- Objective: Estimate the fraction of vertices with in-degree i

FS v.s. Independent sampling

- LiveJournal graph
- Budget = 1\% vertices

FS almost as good as independent edge sampling!

FS v.s. RW

- Flickr graph
- Budget $=1 \%$ vertices

FS more accurate than random walks

Sample paths (whole graph)

- Plot evolution $\hat{\theta}_{1}(\mathrm{n})$, where $\mathrm{n}=$ number of steps
- 4 sample paths $=4$ curves

Controlled experiment

- BA(k) - Barabási-Albert graph with average degree k
- Budget $=10 \%$ vertices

Controlled experiment (cont)

- Plot evolution $\hat{\theta}_{10}$, where $n=$ number of steps
- 4 sample paths $=4$ curves

Q: could we estimate clusters? (tentative)

- the graph conductance (normalized cut)

$$
h_{G}=\inf _{S} \frac{|\partial S|}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

- can be estimated from the Dirichlet q

Dirichlet (experiment):

- $f(u)=0$ if $i d(u)=$ odd
- $f(u)=1$ if $i d(u)=$ even

Graph: Flickr (LCC)
|V|/10 steps
true $R_{s}(f)=0.00103$
estimated: $\mathrm{R}_{\mathrm{S}}(\mathrm{f})=0.00103$
FS: NMSE = 0.31
RndEdge: NMSE= 0.18

Frontier sampling (FS)

- must be centrally coordinated?

Discrete-time Markov Chain

- FS: A random random walk
- Budget B

- Cost of samplingonentexis exponentiallyy distributed with parameter $\not \subset=1$

Conclusions

- Random walks are promising approach
- Real world graphs demand new random walk strategies
- Multiple independent random walks not enough
- Dependent random walks are a powerful and unexplored

A lesson from the past

the Portuguese
"World Map" in 1459

- proved incomplete (Columbus et al. 1492)
- wrong proportions

Lesson:

understanding our "world" requires principled measurement methods

The Fra Mauro world map (1459)

