
� world view is biased

� depends on…

◦ where you are

Research to enable unbiased 

view of the “world”◦ where you are

◦ your network connections

◦ the network structure
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Saul Steinberg's View of the World 

from 9th Avenue

view of the “world”



UndirectedDirected

E.g.:

� YouTube

� Livejournal

� Twitter

� ArXiv
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E.g.:

� OSNs (Facebook, MySpace, etc.)

� Computer networks (in general)

� Family ties (e.g. DNA mutations)

incoming and outgoing 

edges can be queried



graph: G=(V,E)
Compute:
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Can pick up vertex characteristics by querying

◦ Web, FaceBook, YouTube, …

Resource constraints: too expensive to query all vertices

◦ size (100M+ vertices)

◦ query rate restrictions◦ query rate restrictions

How then?  sampling/crawling

◦ Leslovec et al, 2006, Mislove, et al 2007, …
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� vertex sampling � snowball sampling

� random walk sampling� edge sampling

Random sampling Crawling
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� random walk sampling� edge sampling
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� Orkut data set (Mislove 2007), 3M vertices, 200M edges 
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Snowball sampling highly biased



� random walk (RW)

◦ simple to implement

◦ in steady state RW visits edges 

uniformly at random

◦ RW ≡ random edge sampling without

independence

C
C

D
F

RW sampling

� v – vertex in undirected graph G
◦ deg(v ) – degree v
◦ |E| - total number of edges

P[v visited in RW] = deg(v)/|E|

�

� obtains unbiased estimates of 



� random vertex sampling (uniform + independent) 

◦ unbiased

◦ not always possible

◦ high overhead

� MySpace – 10% of ID space populated

� Orkut – 7% of ID space populated

� snowball sampling

◦ biased   (but under certain conditions bias can be removed)

� random walk sampling

◦ Markov Chain Monte Carlo estimation

◦ estimator asymptotically unbiased
e.g. RDS (Heckathorn 1997)
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degree distribution θi ; B samples

� error metric: Normalized root Mean Squared Error

� random vertex sampling θ head: GOOD

θ tail: BAD

� random walk ≈ independent edge sampling

θ tail: BAD

θ head: BAD 

θ tail: GOOD

,

What happens when i > avg.degree ?

Power-law tails more 

accurate with RW



0.3% vertices sampled

◦ random vertex sampling 

◦ random walk sampling 

random vertex sampling
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θ head: GOOD

θ tail: BAD
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Random walk 
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Consider the following (extreme) thought experiment:
random walk 

starts here

2nd random 

walk starts here

A and B are 

“loosely connected”

multiple random walks 
+

loosely connected graphs
=
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Network A Network B

random walk 

“attractors”

loosely connected graphs
=

different sampling probabilities



B – sampling budget

Let S = {v1, v2, … , vm} be a set of mvertices

(1) start from vr ∈ S w.p. ∝ deg(vr)

(2) walk one step from vr

(3) add walked edge to E’ and update vr

(4) return to (1) (until m+ | E’ | = B)
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� centrally coordinated

� when stationary

◦ edges sampled uniformly

◦ vertices sampled ∝ vertex degree

� like a RW, FS estimates:� like a RW, FS estimates:
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Frontier Sampling 

Discrete-time Markov Chain

u

j

k

v

h

Graph G
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Discrete-time Markov Chain

� Gm = m-th Cartesian power of G

� Frontier sampling 

≡
single random walk over Gm



� Flickr graph (Mislove 2007), 1.7M vertices, 5M edges. 

Largest connected component = 1.6M vertices

� LiveJournal graph, 5M vertices, 77M edges

� Objective: Estimate the fraction of vertices with in-degree i
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in-degree = 2

out-degree = 0

Flickr



� LiveJournal graph

� Budget = 1% vertices
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FS almost as good as independent edge sampling!



� Flickr graph

� Budget = 1% vertices

Largest connected componentWhole graph
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FS more accurate than random walks



� Plot evolution     (n) , where n = number of steps

� 4 sample paths = 4 curves
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� BA(k) – Barabási-Albert graph with average degree k
� Budget = 10% vertices

BA(2)

Graph
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BA(2)

BA(10)



� Plot evolution       , where n = number of steps

� 4 sample paths = 4 curves

20

True value



� the graph conductance (normalized cut)

can be estimated from the Dirichlet quotient

f(u) = 1

S

f(v) = 0

V\S

G=(V,E)

∂S

� can be estimated from the Dirichlet quotient
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Dirichlet (experiment): 

• f(u) = 0  if  id(u)= odd

• f(u) = 1  if  id(u)= even

Graph: Flickr (LCC)

|V|/10 steps

true RS(f) = 0.00103

estimated: RS(f) = 0.00103

FS: NMSE = 0.31

RndEdge: NMSE= 0.18



Discrete-time Markov Chain

� must be centrally coordinated?

� FS: A random random walk
◦ Budget B

◦ Cost of sampling a vertex is exponentially distributed with 
parameter α = 1
◦ m independent random walkers
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Continuous-time Markov Chain

◦ m independent random walkers



◦ Random walks are promising approach

◦ Real world graphs demand new random walk strategies

◦ Multiple independent random walks not enough

◦ Dependent random walks are a powerful and unexplored
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the Portuguese 

“World Map” in 1459

◦ proved incomplete 

(Columbus et al. 1492)

◦ wrong proportions
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The Fra Mauro world map (1459)

Lesson:

understanding our “world” 

requires principled 

measurement methods

source: Wikipedia


