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Extensions of the Multiarmed Bandit Problem: 
The Discounted Case 

Abstract-There  are N independent  machines. Machine i is described 
by  a sequence {Xi (s ) ,  Fi(s)} where Xi(s) is the immediate  reward  and F i b )  
is the information  available  before i is operated  for the sth  lime. At each 
time one operates  exactly  one  machine;  idle  machines remain frozen.  The 
problem  is to schedule  the  operation of the machines so as  to maximize 
the expected  total  discounted  sequence  of rewards. An elementary proof 
shows that to each  machine is associated an index, and  the optimal  policy 
operates  the  machine  with  the largest  current index. When the machines 
are  completely  observed Markov chains,  this  coincides with the  well- 
known  Gittins  index d e ,  and new algorithms are given  for  calculating 
the  index. A reformulation of the  bandit  problem  yields  the  tax  problem, 
which includes,  as a special case, Klimov’s waiting time problem. Using 
the  concept of superprocess,  an index  rule  is  derived for the case where 
new machines arrive randomly.  Finally,  continuous time versions of  these 
problems are considered for both preemptive and nonpreemptive disci- 
plines. 

I. INTRODUCTION 

A .  Background 

I N the  basic  version of  the multiarmed bandit problem,  there  are 
N independent  machines.  Let xi(t) be  the state of machine i = 

1, 2, - e . ,  N a t  time t = 1, 2, . At each tone must operate 
exactly  one  machine. If machine i is selected, one  gets  an 
immediate  reward R(t) = Ri(xi(t)) and its state changes to xi(t + 
1) according  to a stationary Markov transition rule; the states of 
the idle  machines remain  frozen, x,(t + 1) = x,(t), j # i. The 
states of all machines are observed,  and  the  problem is to  schedule 
the order in  which the  machines are operated so as to maximize 
the  expected present  values of the  sequence of immediate rewards 

E a‘R(t) 
I=  1 

where 0 < a < 1 is a fned discount factor. (In a  subsequent 
paper  the  case a = 1 and the  case of average  reward per  unit  time 
will  be considered.) 

This  problem  has  received  considerable attention since it was 
first formulated in the 1940’s, dynamic  programming  (DP) being 
the preferred  framework  for its analysis. The essential break- 
through  came only in 1972 when Gittins and Jones [lo] showed 
that to  each machine i is attached an  index ui(xi(t)) which is a 
function  only of its state, and  that  the  optimal  policy operates  the 
machine with  the largest current  index.  Call this the index rule. 
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This  index result is significant, since it decomposes  the N- 

The index was subsequently [7], [8] shown to be 
dimensional  bandit  problem into N onedimensional  problems. 

where the  maximization is over the set of all stopping times 7 > 1. 
Gittins called th is the  dynamic  allocation index @AI) and 
interpreted it as the maximum expected  reward per  unit  of 
expected  discounted  time. (In recognition of Gittins’ contribution, 
we follow Whittle and call this the Gittins index.) One other 
interpretation of  the Gittins index can also be  given [lo], [19]. 

Gittins and  his  associates  did not use DP in their study. 
“Unfortunately,” as Whittle [19] wrote, “[Gittins’] proofs of the 
optimality of the index rule have  been difficult to  follow,  and this 
has  doubtless been the  reason why the full merits and point of his 
work  have not  yet  been generally  appreciated.” Whittle then 
proceded to  supply  an  elegant  proof using DP, and revealed the 
intimate connection between the  (optimal)  value  function and the 
indexes  of the N machines. 

B. Structure of the Problem 

Three features  delimit the multiarmed  bandit  problem within 

i) idle machines  are  frozen; 
ii) frozen  machines  contribute no reward; and 
iii) machine  dynamics  are  Markovian. 
As  will  be seen in Section II, properties i) and ii) almost 

trivially imply the optimality of the  index rule. The  Markovian 
property iii) is useful  only  in  that it permits a simple  calculation of 
the Gittins index  as  shown in Section IV. In retrospect, it seems 
that the Markovian  property  led  researchers  to  adopt a DP 
framework,  thereby  obscuring  the  problem’s  simple structure. 

the general class of stochastic control  problems: 

C. The Tax Problem 

In waiting time  problems  (see  Section V), the  reward structure 
is the  “reverse” of the  bandit  problem. As before, exactly  one of 
N machines can be operated at  a time and the idle machines 
remain frozen. If i is operated at t ,  then  one is charged a tax on the 
idle machines C(t): = CiSi Cj(xj(t)). The  problem is to schedule 
the machines so as to mnimize 

f = 1  

where 0 < a < 1 is a fixed discount factor. 
At first sight, property ii) of the  bandit  problem  appears  to  be 

violated. We will show  nevertheless that  the two problems  are 
equivalent. In Section II it is shown that  the optimal policy for the 
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tax problem is also an index rule determined by the index 

427 

-yi(xi) : = max 
E{ &(Xi) - U'Ci(Xj(T)) I Xi( 1 )  = X i }  

7> 1 3 . (1.4) 

E [v atlxi(l)=xi 

This version of the Gittins index can be interpreted as the 
maximum expected decrease in taxes per unit of expected 
discounted time. 

D. Extensions 

Section IU is devoted to several extensions of the bandit and tax 
problems. In each case the optimal policy turns out to be an index 
rule, although the form of the index varies. 

First, we consider the continuous time problem where, once a 
machine is operated, it cannot be idled until a certain "phase" is 
completed. This corresponds to a nonpreemptive discipline. 
Alternatively, one may view this as a natural extension of the 
discrete time Markov dynamics to the semi-Markov case treated 
in [21]. 

Second, we treat the continuous time problem where a machine 
may be idled at any time. This is the preemptive discipline. 

Third, we consider the more significant extension to a 
superprocess [6], [7], [ 191. Here, in addition to selecting the 
machine to be operated, one also chooses a control action. Under 
fairly restrictive conditions, similar to those given by Whittle 
[19], an index rule is shown to be optimal. 

Finally, we consider the situation where new machines are 
being made available: if time is discrete, the new machines must 
form an i.i.d. sequence; if time is continuous, they must form a 
Poisson process. This situation is analyzed using the results on 
superprocesses . 

E. Computation of the  Index 

As mentioned before, the results in Sections II and III on the 
optimality of the index rule do not require Markovian dynamics. 
In this general setting it is not easy to compute the index. 
However, when the machines evolve according to a finte state 
Markov chain, one can give algorithms to compute the index. 
Such algorithms are described in Section IV and are simpler than 
others published in the literature. 

F. Applications 

There is an extensive literature showing that the multiarmed 
bandit and its variants can be used to model the decision problems 
in job scheduling, resource allocation, sequential random sam- 
pling, clinical trials, investment in new products, random search, 
etc.  See [1]-[4], [A, [15]-[18],  [21] and the references listed 
therein. There is no need to review these applications here. It may 
be worth noting that since we do not assume Markovian 
dynamics, some new applications may be possible. 

On the other  hand, the tax problem formulated in Section I-C  is 
novel. It was suggested by the important work of Klimov [ 131, 
[ 141. In Section V we show how the index rule for  the tax problem 
provides an optimal policy for a version of Klimov's problem. 

1I.  OPTIMAL^ OF THE INDEX RULE 

A .  Main Idea Illustrated 

S i n e  the simple idea underlying the proof might be obscured in 
the general case by the cumbersome notation, we illustrate it  by 
the example of  a deterministic two-armed bandit problem. 

Suppose there are two deterministic machines, X and Y.  If 
these were operated continually, they  would respectively yield the 

sequences of immediate rewards 

In analogy with (1.2), we define the index (at time 1) of these 
machines as 

7 -  I r -  I 

arx(t) 2 afY(t) 
vx : = max '=:- , vy:=rnax . (2.2) I: a r  

r>l 7 - 1  I: 
f =  I f = I  

Suppose vX is realized at 7 and that vx 2 v y .  It is easy to check 
that (2.2) implies 

I 

u 2  1. 
1 I 

Consider the sequence of immediate rewards obtained by using 
an arbitrary policy 'IT. This sequence will be an interweaving of the 
two sequences in (2.1). Call it 

and let T be the time when 'IT operates machine X for the (7 - 1)st 
time, so that Z( T )  = X(7 - 1). (If 'K operates X fewer than 7 - 
1 times, then T = m.) The 2 sequence must be of the form 

X(2), a ,  Y(k7-I), X(7- l ) ,  Z(T+ I), Z(T+2), * .  

(2.5) 
Next consider the policy ii which first operates the X machine 

(7 - 1) times, machine Y for k,- I times, and then follows policy 
'IT to yield the sequence 

.*., x(7-11, Y(l),  Y(kr-d, 

Z(T+ l ) ,  Z(T+2), * * .. (2.6) 

The present values of these policies are 

Then V(+) - V('IT) = Ax - A y ,  where (with ko: = 0) 
7 -  I 

A x  : = (1 -akr)afX(t) 
I 

7 -  1 

1 vx (akt-l -akt) an, by (2.3) 
7 -  1 

1 n = f  

1 
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idled  at time t .  The tax problem is to find  the  policy a that 
minimizes 

k,-*+ I 

I n = l  

r -  I k. 

r -  I 

= vx (1 - akr)a'. 
1  

Hence, V(%) 2 V(?r). 
Thus, it is better to  follow  the index rule until time 7 - 1. The 

argument  can now be repeated starting at  time 7. This proves  the 
optimality of  the index rule. Observe that the  freezing  property is 
needed to guarantee that the  sequence (2.6) is feasible; property ii) 
(idle machines yield  no reward) is used to  compare  the  rewards 
obtained by  any  policy  with the rewards  due to the  index rule. 

B. Formulation of the Bandit and Tax Problems 

Machine i = 1 ,  2, . e ,  N is characterized by the pair of 
sequences 

(X'(s), F'(s)}, s= 1 ,  2, * * . . (2.7) 

Xi(s) is the (random)  reward  obtained when i is operated  for  the 
sth time. Fi(s) is the a-field representing the information about 
machine i gathered after it has been operated (s - 1) times.  It  is 
assumed  that 

i) Fi(s) C Fi(s + 1); let Fi: = Vp.(s) (Xi(s) need  not  be 

ii) VdXi(s ) )  VF', i = 1, * - a ,  N, are independent; 
iii) E Cr a'lX'(t)I < 03, all i; here 0 < CI < 1 is a fixed 

adapted  to Fi(s)); 

discount factor. 

At each  time  exactly  one  machine must  be operated. Thus, t = 

operated  during 1, 2, . - -, t .   t i  or ti(t) is called the ith machine 
time  at process time t .  

Consider  the  decision  at  time t + 1. This must  be  based on the 
available  information 

t1 + ... + t N  where t i  = ti(t) is the  number  of times i is 

F(t+1) :=YFi(ti+l) ,   t=O, 1, e * * .  

(Here and subsequently, V;Fi(ti + 1) is shorthand for the 
following  inductive definition. Let i(t) be the  machine  operated at 
time 1. Then F(t + 1) = F(t)VG(t), where G(t) is  the  a-field 
generated by  sets  of the  form (i( t)  = i} fl ( t i ( t )  = s) n A ,  with 
A E F'(s + I).) A policy is any sequence of decisions that 
satisfies this information constraint. The  bandit  problem is to find 
the policv a that maximizes 

where i(t) is the  machine  operated  at  time t .  The  conditioning with 
respect to F(1) will prove  convenient later when  a change of time 
origin will be used. 

In the tax problem  the  data  and  assumptions  are identical. The 
only difference is that'X'(s) is interpreted as the tax that  must  be 
paid at  time t if, after being operated (s - 1) times, machine i is 

C. Equivalence of the Problems 

Consider any  policy a. Let li(s) be the  process time  when 'IT 

operates i for the sth time; l;(O): = 0. Then,  for  the bandit 
problem 

co 

i s=l 

and for  the tax problem 

f m  

Suppose  we wish to maximize V(a). Define  machines { Yi(s), 
Fi(s)l by 

m 

Y i(s) : = x a r ~ ; ( s  + r) . 
Then, 

r=O 

Xi@) = Y'(s) - aY'(s+ 1). 

Simple  algebraic  manipulation  leads to the form 

a'i(s)Xi(s)=aY'(1)-(1 -0) x [ali(s-1)+I 
m m 

s= 1  I 

+ . . . +a&)- I ]  yi(s). 

Since Yi(I) fixed, it foUows  that  maximization  of V(a> i~ 
equivalent  to  the tax problem: - E [al;(s-l)+l+ - .  +a/i(s)-l]Yi(s)IF(1) . 

i s  1 
On the  other  hand,  suppose we wish to minimize W(a). Define 

machine {Z'(s), Fi(s)) by 

Z'(s) : = X'(s) - aX'(s + 1). 

5 [aIi(S-I)+L+ . a +a[i(s)-1]Xi(s) 

Then  one  gets 

I 

=(1 -a)- '  [,pi. a'i(s)Z'(s) 
1 1 

1 
and so the tax problem is equivalent  to the  bandit problem: 

max E [ a'i(s)Zi(s) IF(1) . 

D. ihe Index Rules 

For  the  bandit  problem,  the index of machine i after it  has  been 
operated (s - 1) times is defined as 

vi@) : = max (2.10) 
T > S  
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where the maximization is over all stopping times 03 2 7 > s of 
{ F i ( - ) } .  (Here, and in the sequel, "max"  is to be interpreted as 
the more cumbersome phrase "ess  sup" used in Appendix A.) 

For the tax problem, the index of i after it has been operated (s 
- 1) times is defined as 

The indexes in (2.10) and (2.11) are in conformity with the 
equivalence transformations introduced in the preceding section. 
Note also that if the machine dynamics are Markovian and 
stationary, then (2.10) reduces to (1.2), while (2.11) reduces to 
(1.4). 

In Appendix A  it is shown that there always exists 7 achieving 
the maximum in (2.10). The index rule for either problem is the 
policy that operates the machine with the largest current index. 

E. Optimality of the  Index  Rule 

Because the two problems are equivalent, only the bandit 
problem is considered. The optimality is based on the following 
lemma, whose proof is relegated to Appendix B. 

Let X( t ) ,  t = 1,2 ,  - a ,  be a sequence of random variables on  a 
probability space (Q, F, P). Let {F( t ) )  be an increasing family of 
sub-a-fields of F, and suppose that E C IX(t) I C 00. 

Lemma  2. I :  Suppose that 

where the maximization is over all {F( a ) }  stopping times and 
suppose that T* achieves the maximum. 

a) Then 

for all {F(-)}-adapted random sequences { ( . y ( f ) }  such that 

l r a ( t ) r a ( t +  1)rO a.s. for all t .  

b) Moreover, 

E [%I B(t)X(t)lF(l)] r O  a s .  
r =  1 

for all { F ( *  )}-adapted random sequences { @ ( t ) }  such that 

0 5 B(t) 5 B(t + 1 )  I: 1 a s .  for all t .  

Clearly, the results of the lemma will continue to hold if { a ( t ) }  
and { @(t)} are adapted to the sequence {F( -) VG} , where G is any 
field independent of F. 

Before proving optimality of the index rule, we give two 
corollaries of Lemma 2.1. These corollaries are of independent 
interest; they are not  used  in the sequel. 

Corollary 2. I :  The index is nondecreasing in the discount rate. 
P r o o f : L e t { X ( t ) , F ( t ) } , t  = 1 ,2 ,  *- . ,beas inLemma2.1  

and define for a E (0, 11 

v(a) : = max E [ alx(t) I F(l ) ]  
7> I 

Let b E (0, a). We show that v(b) 5 v(a). One has 

maxE {$ a'[X(t)-v(a)]IF(l)  = O .  
r> I 1 

Now, 

= E  [ a( t )a l [x( t )  - v(a)l I n1) I: 0 
1 = 1  3 

since a(t):  = @/a)' 1 (7 > t )  is such that 1 2 a( t )  B a(t + 1) 
L 0. Since 7 is arbitrary, it follows that v(b)  I v(a). rn 

Corollary  2.2: Let {a ( t ) ,   X ( t ) ,   F ( t ) } ,  t = 1 ,  2 ,  * -, be as in 
Lemma 2.1 and define for a E [O, 11 

If v, 2 0, then v, 2 v,. 

Therefore, by Lemma 2.1, for all 7 > 1, 
Proof: One has m w Z l  E{C;-' at [X( t )  - v,lIF(l)} = 0. 

so that 

Hence, v, L v,. rn 
We now prove the optimality of the index rule. The main 

difficulty is one of notation. Consider the effect of any policy T 
from time t on. By a change of time origin we can set t = 1, so 
long as the information available from operating the machines up 
to time t - 1 is incorporated in the initial a-fields Fi( l ) .  Let 

a l l ,  Z(2),  . - .  
be the sequence of immediate rewards resulting from T. This 
sequence is an interweaving of the N sequences 

Xi(l) ,   X'(2) ,  . . a ,  i = l ,  - * * , N .  

Let li(s) be the time when P operates machine i for the sth time. 
(If P operates machine i fewer than s - 1 times, then li(s): = 00.) 
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? ( t )  &...-.,. A . . _ x ' o  . Z o . . .  t 
t I T-I 4 J s )  T i  I 

Fig. 1 .  Reward sequences 2, z. 
Then 

ti(t)=max { s r 0 ) l i ( s ) s t } ,  Z(li(s))=Xi(s), 

Suppose without loss of  generality that  machine  1  has the 
largest index, 

v1 : =vl(l)2vi(l), all i, (2.12) 

and let it  be achieved at the  stopping time T of (Fl( e)}. Let 

T : = f I ( T -  l), ki : =t i (T) , .  

so that kl = T - 1. 
Let ii be the policy  defined as follows: 
a) operate  machine 1 at time 1,  2, * a * ,  T - 1, 
b) operate  machines i # 1 at  time T, . e ,  Tin the  same  order 

e) operate  according to ?r at time T + 1, T + 2, . 
See  Fig. 1. It is readily  seen that ii is a (feasible) policy. Let the 

as a, and 

resulting sequence of immediate  rewards be 

Z(l), 2(2), - * * . 
Then Z(t) = Z(t), t ,> T. Let ((s) be the  time when ii operates i 
forthesthtime.Sofl(s) = s f o r s =  l ; * - , ~ -  1.Then 

A : = V(ii) - V(a) 

- E  [ crfas[X'(s) - vi] 1 F(1) 
i # l  s= I 3 

The last term in (2.13) is 

vlE 2 [ a s -  a'l(s)] - [ab@) -a@)] I F(1) 
k, 

s= I i f 1  s=l  1 
N k, 

= VIE [ E [a$(")- a'i(s)] I F ( l ) j  

= v l E  [i d-i aIlF(1) =O.  

i = l  s=l  

t = I  1 = 1  1 
By Lemma 2.lb (with X(t): = ar[Xl( t )  - VI), the first term of 
(2.13) is nonnegative; by Lemma 2.la (with X(t):  = af [X i ( t )  - 
vi]) ,  the  second  term of (2.13) is nonpositive.  Therefore, A 2 0 
a.s.  Hence, ii is better than a. 

Now ii coincides with the  index rule over 1,  2, e ,  T - 1. 
Since the initial time was arbitrary,  Theorem 2.1 is proved. 

Theorem 2. I :  The index  rules  defined by (2.10)  and  (2.11)  are 

Remark 2. I :  From  the  proof of Theorem  2.1,  one  can  see that 
the  index rule  proceeds in  "stages" as  follows. 

Stage 1: Calculate q(l), - * , vN(1).  Suppose vi(l)  is the largest 
and let it be  achieved  at  time T~ > 1.  Operate  machine i for  time 1, 
2, - - * ) T~ - 1. At  the  end  of stage 1, the process time is TI: = ~i 

- 1. 
Stage k + 1: Suppose T k  is the  process time  at  the  end of stage 

k and let the corresponding  machine  times be Si: = t i (  Tk). 
Calculate the indexes vl(S' + l), - - e ,  vN(Sy + 1). Suppose the 
j th  index  is the largest andiet it be  achieved  at  the stopping time T, 
> S', + 1. Operate  machine j for  time 

optimal. 

Tk+1,  Tk+(Tj-l-$)  :=Tk+I. 

In words:  at  the  end of each  stage calculate all indexes, and 
operate  the  machine with  the largest index  for a  time  given  by the 
corresponding  optimal  stopping  time. This alternative construc- 
tion of the index rule will be used in Section III-C. 

III. EXTENSIONS 

A .  Continuous Time,  Nonpreemptive 

The  data are slightly different. Machine i = 1, -, N is 
described by the  triple 

{X'(s), UQ), F'(s)], s= 1, 2, . . * .  (3.1) 

Xi@) is the  instantaneous  reward  (or tax) as  before. If i is operated 
for  the sth time,  it must  be operated without interruption  for  the 
(random)  time interval ai@). Fi(s) is, as before,  the  information 
obtained after i has been operated (s - 1) times. Assumptions  i) 
and iii) of Section 11-I3 are maintained. Assumption ii) is replaced 
by: the  Nu-fields  generated by {Fi, Xi(s),  d(s),  s = 1, 2, - - . }, i 
= 1, * * a ,  N, are  independent.  It is not  assumed that d(s) is 
adapted to F'(s) or Fi(s + 1). 

The  discrete  parameter t = 1, 2, - now denotes the process 
period  number  and ti = t'(t) is the  number of times i is operated 
during the first t periods. Let i(f) be the machine operated  during 
the tth  period.  Then  the real (process) time at  the end of period f is 

o(t) = ui(l)(ti(U(l)) + . . . + o W ( p ( r ) ( t ) )  (3 4 

with 40): = 0. 

the  bandit problem is [cf. (2.8)] 
With this additional notation the  present value  of rewards  for 
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The integral gives the present value of rewards when i(t) is 
operated during the tth period, discounted back to time 0. The 
case ui(s) = 1 reduces to the standard bandit problem of Section 
II-B . 

The index of i after it has been operated (s - 1) times is  now 
defined as [cf. (2.10)] 

43 1 

(3.4) 

where 7 is any stopping time of {Fi( e ) } .  

At the end of each period, the index rule operates the machine 
with the largest current index and for the associated period u. The 
proof of the next result requires obvious changes in the proof of 
Theorem 2.1. For the case of discrete time semi-Markov 
processes, this result was obtained by Whittle [21]. 

Theorem 3.1: The present value given by (3.3) is maximized 
by the index rule defined by the index (3.4). 

A similar result holds for the tax problem. The present value of 
the tax stream resulting from policy ?r is [cf. (2.9)] 

The index of i after it has been operated (s - 1) times is now 
defined as [cf. (2.1  l)] 

E { x ; ( ~ )  -aBc~)+ . . .+J ( ( ' -~ )~ i (  
n(s) : = max 7) I Fib)} . (3.5) 

7>5 E Sr'(5 ) + . . . + d ( 7 - 1 )  
a' dr I F'(s) 

0 1 
One can then show that the index rule defined by this index is 
optimal for the tax problem. 

B. Continuous Time, Preemptive 

Machine i is now characterized by the continuous parameter 
process 

{X'(s), F'(s)}, s r o .  

Xi($ is the reward (or tax) process. F'(r) C F'(s) for r < s. F': 
= Vp'(s), F' and FJ are independent for i # j .  

At any (process) time t ,  any machine may be operated. Let t' = 
t i( t)  denote the Lebesgue measure of the process time during 
which i is operated. Then the present value of  a policy ?r is 

The index for machine i after it has been operated for time s is 
defined by 

E [ 1: a'Xi(t) dt IF'@) 
Y'(S) : = sup (3.6) 

7 2 5  E [ 1:d dt I Fi(s)] 

The index rule is to operate at each t the machine with the 
largest current index. 

To prove the optimality of the index rule, various additional 
technical assumptions must be made so that i(t),  t'(t), and (3.6) 
are well defined. In many cases one can construct a proof as 
follows. Fix E > 0, and restrict attention to policies ?re which 

switch machines only at times 0, E, 2 6 ,  * * . This is  a standard 
bandit problem of Section 11-B. Moreover, 

sup V(7re)5 sup  V(7r,,*)5sup V(7r). 

A technical argument is  now required to show that sup V(T) - 
sup V(T,) + 0 as E + 0. The bandit problem for diffusions is 
analyzed in [ l l ]  by extending Whittle's dynamic programming 
argument. 

An index rule for the continuous time tax problem can be 
derived in a similar way. The index for machine i after it has been 
operated for time s is given by 

Y i ( S )  : = sup 
E{ aSX'(s) - a'X'(.r) I F'(s)} 

7>5 

E [ 1: a' dt I Fi(s)] ' 

The index rule defined by this index minimizes the present value 
of taxes 

C.  Superprocess 

A superprocess is  a collection of independent machines. For i 
= 1, 2, * . . , N let the ith superprocess be the collection Xi of 
standard machines X' = {X'(s), F'(s)). (The filtration {F'(s)} is 
machine-dependent.) For each selection X'  E Xi, let V*(X', 

* - , X N )  be the maximum expected reward of the standard bandit 
problem associated with the machines X ] ,  * * e ,  X". The bandit 
problem associated with the N superprocesses is to find X' E X'  
to 

max V*(XL,  * * - ,  X " ) .  
x1 . . . x" 

It is natural to expect that the selection of the optimal ( X L ,  . . . , 
XN) will usually have to be jointly determined. Our aim is to give 
a condition which implies that the selection of the best machine in 
the ith superprocess can be made independently of the selection of 
the machine in the j th superprocess j # 1. The condition is a 
generalization of that given by Whittle [I91 and involves the 
concept of machine domination which is introduced next. 

For any machine X = {X(s), Fx(s)} and u E R, let 

where 7 ranges over all stopping times of {Fx( e ) } .  Observe that 
N(X,  u) 1 0, since the sum in (3.7) vanishes for T E 1 a.s. 

Remark 3.1: Note that if r, is the optimal stopping time for 
(3.7), and p I u, then one can find an optimal stopping time rP 
such that T~ 1 7, a.s. (See the proof of Lemma 3.4 for a similar 
result.) 

Observe also that  if v( 1 )  is the index of machine X at time 1 and 
if r* > 1 is the corresponding stopping time given by (2. lo), then 

N(X,  u( 1 ) )  = 0 

and this is achieved by I-*. 

{ Y(s), FY(s)} (for the bandit problem) if 
Say that machine X = {X(s), Fx(s)} dominares machine Y = 

N(X,  v) IN( Y,  u )  for al l  u. (3.8) 

The interpretation of domination is as follows. Say that one may 
operate one of the machines X and Y up to some random time, 
after which one retires and receives the constant reward v. Then X 
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dominates Y if and only  if  it is optimal to choose X over Y for any 
given value of v. (See Whittle [19].) 

Remark 3.2: If X dominates Y,  then 

This can be verified by letting v --+ - 03 in (3 .9 ,  (3.8). 

Xi. Then 
Theorem 3.2: Suppose X' E X' dominates every other Y' E 

V*(X1, * .  a ,  X N ) =  max V*(Y1, --., YN). 

Thus, if each superprocess contains a dominating machine, then 
making the joint optimal selection over X i  X * - X X N  reduces 
to N decoupled optimization problems. The condition that there 
exists a dominating machine is quite restrictive. 

The proof of Theorem 3.2 depends upon the crucial Lemma 
3.2, which in turn requires the next instructive result. 

For a machine 2 = {Z(s),  Fz(s)} define a sequence of { F z ( * ) )  
stopping times u1 < u2 e * - - and a sequence of index values vI ,  
v2, * * as follows. 

Stage 1: Let vl: = vz(l) and suppose the index is attained by 
the stopping time u1 + 1 > 1. See (2.10); here v z  is the index of 
machine 2. 

Stage i + 1: Let vi+ I: = vz(uj + 1) and suppose it  is attained at 
time + 1) > (aj + 1) (when finite). 

Lemma3.1: vi is measurable with respect to Fz(u,-l + l)(u,~: 
= 0). Also 

Y'EX' 

v i ~ v i + ~ ,  as. 

Proofi The first assertion is immediate from definition 
(2.10). Suppose P { V ~ + ~  > vi} > 0. Define 

u=o; on { V ~ + ~ S V ; }  

= u ~ + ~  on { ~ ' + ~ > v ~ } .  

It is easily Seen that u + 1 is a stopping time since {vi+ > vi] E 
Fz(ui + 1). Moreover, 

>v;E [ a'IF(uj-l+l) 
u , - , + l  1 

with positive probability, which contradicts (2.10), and the proof 
is complete. 

Lemma 3.2: Let X = {X(s), Fx(s)) ,  Y = { Y(s), P ' ( S ) ] ,  Z 
= {Z(s), Fz(s)) be three machines. Suppose d X ) ,  ~ ( y ) ,  42) 
are independent where 4X): = Vp(X(s))VSFx(s), and 4 Y ) ,  

o(Z) are defined similarly. If X dominates Y,  then 

V*(X, 2)r V*(Y, 2).  

Proof: By Theorem 2.1 V*( Y ,  2 )  is attained by the 
corresponding index rule. Suppose the index rule leads to the 
sequence of immediate rewards, 

Y(l), . . -, Y(W, Z(l), * . -, Z(UI), Y(hl+ 11, . * * ,  Y(X2), 

Z(u, + l), -, Z ( q ) ,  . * ' 
where hi+l 2 hi and 2 u; are stopping times of { F Y ( . ) )  and 
FZ( a ) ) ,  respectively. Then 

a'Y(t) + a'Y(t) + * * . 
A2 

x, + 1 3 
(3.9) 

According to Remark 2.1, we  may assume that the interval ui 
+ 1, * * , ui+ is a stage in the implementation of the index rule. 
Let vi: = vz(ui-l + 1). Then (2.10) and Lemma 3.1 respectively 
imply 

(3.10) 
vi+ I vi a.s. 

We now specify in stages a policy for  the bandit problem 

Stage 1 :  Calculate v l .  Find the stopping time (7 + 1 )  of 
involving the two machines X ,  2. 

{Fx( -)} such that 

N(X,  v l )=E x a'[X(t)- V I ]  . c :  3 
Operate machine X for T~ times. Then operate machine Z for u1 
times. 

Stage i + 1: Calculate vi+ Find the stopping time (7;+ + 1 )  
of IFx( .)} such that 

N(X, vi+ 1) = E  [ $ a'[X(t) - vi+ 11 (3.11) 

Because vi+ 5 vi a s . ,  we  may assume that T ~ +  2 a.s.; see 
Remark 3.1. Operate machine X for (T;+ - 7;) times. Then 
operate machine 2 for (ui+ - ui) times. 

This policy results in the sequence of immediate rewards 

X(I) ,  ' * * 9 x(71), z(1), ', z (ud ,  x(71 + 11, . * ', X(72), 

Z(0,  + l ) ,  ' * . , Z ( U A  . . . 
and so 

V*(X, Z ) r E  [ $ a'X(t)+ a'l 5 afX(t)+ * . 
q +  1 3 

(3.12) 
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which  will be compared with (3.9). We have V*(X, Z )  - V*(Y, 
Z )  I AI - A2 where 

AI = E  [ $ a'X(t)- d Y ( t )  
AI 

1 1 

(3 .13)  

(3.14) 

The typical term in (3.13) is 

h 
a ' X ( t ) - e  u'Y(t)IFZ(ui+1) 

I 33 

using (3.1 l), and the hypothesis that Xdominates we also used 
the identity a + + a' = a(1 - a)-I(l  - a').  Hence, 

1 - a  - A l r E ( a h ~ - u a ' ~ ) ( l - a u ~ ) v l + E ( a A ~ - a r ~ ) ( a u ~ - a u ~ ) v 2 + ~ ~ ~ .  
a 

(3 .15)  

Similarly, using (3.10) in (3.14), one finds 

1 - a  
a 
- A2 5 E(aXI - arl)( 1 - u " ~ ) Y I  + ,E'(uA2 - u ' Z ) ( U " ~  - uu2)v2 + . . . 

which proves that AI - A2 2 0 as required. w 
Corollary 3.  I :  Suppose X and Yare in X '  and X dominates Y .  

Then for any machines y2 E X 2 ,  . * ,  Yv E X" 

V*(X, Y2, - - - ,  Y")rV*(Y,  rz, . . * ,  Y"). 

Proof: Consider any  policy that attains V*( Y,  p, . . . , Y".) 
and let the corresponding sequence of immediate rewards be 

Y( l ) ,  * * 1 Y(hl), Z( l ) ,  * * . , Z(Ul), Y(XI + 1 1 ,  * * ,  Y(X21, 

Z(u1 + l), . . . , Z(U2), . * 

where { Z(s)} is an interweaving of the reward sequences { V(s)}, - . . , { Fv(s)}. We can certainly construct a machine Z = { Z(s), 
FZ(s)} where Z(s) is as above and Fz(s) is the corresponding 
information u-field. Then 

V*(Y,  Y2, * * * , Y Y )  = V*(Y, 2). 

Also V*(X, Z )  5 V*(X, YZ, . . a ,  P') since operating Z is more 

restrictive. By Lemma 3.2, V*(X, Z) L V*( Y, Z) and the result 
is proved. 

Proof of Theorem 3.2: Repeated applications of the corollary 
above give 

V*( Yl ,  . . . , Y\)s V*(X',  P, * * * ,  y"> 

- <. . .  5 V*(XI, . * , X?. rn 

Corollary 3.2: Suppose X i  E X i  dominates every Yi E Xi .  
Let X = {X@), I@)} be the machine corresponding to {XI ,  * * - , 
X " }  operated according to the index rule, let Y = { Y(s), F(s)} 
be the machine corresponding to { Y 1 ,  * - . , Y N }  with an arbitrary 
strategy. Then X dominates Y. 

Proof: Five v E R and let Z be a machine always giving the 
reward 0. The maximum reward for the multiarmed bandit 
problem corresponding to the N + 1 machines {X1 - v, - * , X' 
- v, Z } ,  with X i  - v: = { X i ( s )  - v, Fi(s)} is N(X, v). 
Similarly, N( Y,  v) is less than the maximum reward correspond- 
ing to { YI - Y, ; * . , r" - v, Z } .  Now, if X i  dominates Yi, then 
it  is clear that X'  - v dominates Y' - v. Therefore, by Theorem 
3.2, N(X,  v) 2 N(Y, v) and the proof is complete. w 

For the tax problem there is an analogous result, except that the 
definition of domination is different. 

We say that X = {X@),  Fx(s)} dominates Y = { Y(s), FY(s)} 
'for the tax problem if 

r(x, 7) 2 r( y,  Y) for all Y 

where, for a machine Z = {Z(s), Fz(s)},  

r (Z ,  y) : = max E aZ(1) 
r> 1 I -a'Z(7)-y I' . 

r : l  3 
For the tax problem with machines XI, . . , X', let W*(X', 

Theorem 3.3: Suppose X i  E X' is such that X' dominates 
- . , W") be the minimum expected cost. 

every Yi E Xi. Then 

W*(XL,  . . . , X? = min W*( YL, * * , Y?. 

Superprocesses arise in multiarmed bandit problems that 
involve controlled machines. Consider the "standard" discrete 
time problems of Section 11-B with  an additional degree of 
freedom: when a particular machine is operated, one must select 
also a control action that affects both the immediate reward and 
the machine "state transition." The control action is based on the 
available information about the machine and also about the others. 

Consider each machine with all its possible "local" feedback 
laws as a superprocess X' = { Y i } .  By ''local'' feedback law it is 
meant that the control actions are based only on the available 
information about that machine. It is shown below that if every 
superprocess X i  contains a dominating machine X i ,  then the 
optimal strategy for  the controlled multiarmed bandit problem is 
to operate these dominating machines according to the index rule. 
In particular, "local" feedback laws are optimal. It can be shown 
that this is not the case, in general, if there is no dominating 
machine for every X ; .  To prove this optimality, we consider the 
case of two superprocesses X '  = { Y l }  and X 2  = { y;?} . Thus, 
every Yi = { Yi(s), Fi(s)} corresponds to a process with a control 
law y ' = { y f , y 1, . . . } that is F'(s) adapted. Fix an arbitrary 
strategy for the controlled multiarmed bandit process. At every 
time s the strategy defines whether to operate X '  or X and also 
which control action to take on the basis of the available 
information. Notice that the choice of the control action is 
equivalent to the choice of a local feedback law for the machine 
that is operated at time s on the basis of the information available 
about the other machine. For arbitrary feedback laws y1 for XL 
and y2 for x and an arbitrary "switching rule" u for selecting 
XI or x, denote by A,(yl, y 2 ,  a) the event that the fixed strategy 

XI. .  .x.. 



434 IEF.E TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 5, MAY 1985 

for the controlled multiarmed bandit problem has been using y I ,  
y2, and u at least up  to time n. To simplify the notation, let B = 
(y I ,  y2, a) and denote by 8 the collection of all possible 8's. It can 
be assumed that CaEe 1{w E &(a)} = 1 for all n. That is, 
policies that agree up to time n are identified up  to  time n. Then 

where {Z:} would be the sequence of rewards corresponding to 
( ? I ,  7 2 ,  u) = 8 .  Notice also that An+,(B) C A,(@ E FZa(n) for 
all 8, n. The assumption that there are dominating local feedback 
laws, say yl* for XI and y2* for P, implies by Corollary 3.2 that 
a* = y2*, index rule) is such that {z",*> dominates all the 
{z:} for 8 E 8. It then remains only to prove the following. 

Lemma 3.3: ZB* dominates Z .  
Proof: Fix v E R and define 

Thenb* L b', B E 8. Definez: = Z t  - a-lb'l { n  = I}, B E 
9. Then 

Therefore, by Lemma 2.1, 

so that 

Hence, Z8* dominates 2, as was to be shown. I 
Lemma 3.3 is valid for an arbitrary number of superprocesses. 

D. Arm-Acquiring Bandits 

We shall consider the discrete time bandit problem of Section 
II-B but, in addition we permit the arrival of  new machines. 
Whittle [20] calls this an arm-acquiring bandit. To describe the 
model, the previous notation must be extended as follows. 

There is now  a potentially infinite number of machines i = 1, 
2, - . . The ith machine X i  = {Xi@) ,  Fi(s)) is described exactly 
as before. At time t ,  only a finte number of machines i = 1, 2, - - , n(t) is available. These  are the machines which either were 
available at time 1 or arrived during 1, * a, t - 1. Let t i( t) ,  i = 
1, . , n(t), be the number of times that i was operated during 
time 1, * * , t .  Thus, t i ( t )  is the ith machine time at process time t. 

The decision at t + 1 is to be based on 

i =  1 

At time t a set A(t)  of new machines arrive. These are "new" 
in the sense that at t their machine times are zero. Let IA(t)l 
denote the number of machines in A(t). Then 

n( t+l )=n( t )+  IA(t)I 

and at t + 1 one may operate any machine i = 1, - - , n(t + 1). 
Here n(1) is the number of machines available at time 1. In 
addition to the assumptions i)-iii) imposed at  the beginning of 
Section II-B, we make the following assumption. 

iv) For each t the set of random arrivals A(t) is independent of 
the control actions taken during 1, - * , t .  

The assumption means essentially that the number and type of 
machines arriving in the future cannot be affected by the order in 
which machines were operated in the past. The assumption 
permits future arrivals to be dependent on past arrivals. This 
possibility will be removed later. 

We convert this problem into one involving superprocesses. 
To begin, suppose only one machine X = {X(s), F(s)} is 

available at  time 1. The arrival of  new machines is described by 
the random sequence (A( t ) ) ,  t = 1,2, - - * . A policy a prescribes 
at each time t whether to operate machine X or to operate one of 
the machines that arrived before t .  Each such policy will 
determine a sequence of immediate rewards and an associated 
sequence of information fields. We may regard this pair of 
sequences as a "standard" machine X" = {X"(s), F"(s)) of the 
type introduced in Section II-B; different policies will be 
associated with different machines. The set of all (feasible) 
policies can, in this way, equivalently be regarded as a set of 
possible machines, in  other words, as a superprocess, say X. Note 
that the original machine X corresponds to a policy that does not 
operate any newly arrived machine. Hence, X E X .  

We want to show that X contains a dominating machine X". 
The following proposition will be useful. 

Lemma 3.4: Let 2 = Z(s), F(s)} be a machine. Consider 

r- 1 

and let 7 be optimal. Let u > 1 be any stopping time. Then 

The result continued to hold if u is allowed to be a stopping time of 
F(s)VG, where G is any u-field independent of F. 

Proof: Let N = E;-' a'Z(t). Then 

N = E  ~ ( u > T )  I .  7 -  I 

6-1 

+ E  2 a'Z(t), 6 :=min (u, 7). 
I 
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Since Ecf-' a'Z(t) I N, the first inequality is proved.  Also, 

= E  x a'Z(t)-E [ I ( . > . )  x a'Z(?) , 
A -  1 

1 '1' 3 
X : =max (u, 7). 

Since a f Z ( f )  I N, the second  inequality  is proved. 
For any  policy a and  number v, let 

N(T,  v) : = rnax E af[Xr( t )  - Y] 
7 -  1 

T >  1 
I 

where 7 is  a stopping  time of {FT(.)}. Let 

7 -  1 

rn 

N(v) : = max N(a, v) = max  rnax E a ' [ P ( t )  - Y ]  (3.16) 
. .  

h z ; > I  
1 

and  let a(v), ~ ( v )  be optimal  for (3.16). We assume that a(v) 
exists. 

Then X" dominates  every  machine in X if N(a, v) = N(v) for 
all v [see (3.8)]. 

Fix two numbers p < v. 
Lemma 3.5: There exists a  policy a which agrees with a(v )  

during 1, . . . , T(Y) - 1 such that N(a, p) = N(ab) ,  p) = N(p). 
Proof: Denote  the  reward  sequence  during 1, * , ~ ( v )  - 1 

corresponding  to a(v) by 

Z(1) - v, Z(2) - Y, . a * , Z(7(v) - 1) - v (3.17) 

and the reward  sequence during 1, * * . , ~(p)  - 1 corresponding 
to ab) by 

Y( l )  - p, * * I ,  Y(Ul) - p, Z(1) - p, Y(fJl+ 1 )  - p, * * -, Y(u2) - p ,  

Z(2)-p,   Y(u2+1)-p,  I . . ,  Z(k-1 ) -p ,  

Y ( u k - l + i ) - p ,  * " ,  Y(uk)-p. (3.18) 

In the  sequence  (3.18)  the Z(i)  denote  the  rewards which 
explicitly appear in (3.17). Hence, k - 1 I 7(v) - 1. By Lemma 
3.4, and  since p c v, 

0 S E   a ' [ z ( t ) - ~ ] < E  a'[Z(t)-p].  
+- 1 +- 1 

k k 

Hence, if k f dv), the  policy  which gives  the  reward  sequence 

will give a larger  reward than ab), which is not  possible since 
ab) is optimal.  Hence, we  may assume that k = ~ ( v )  in (3.18), 
and  in particular ~ ( p )  L T(v). 

Next,  consider  the policy p which  up to the stopping time 7: = 
7(p) gives  the  reward  sequence 

and after that it agrees with  the  policy ab). Assumption iv) 
guarantees the feasibility of a. Also a agrees with a(v) during 1, - . , ~ ( v )  - 1. Since N(p) = N(a(p), p), 

O>N(T, p )  --N(PoL), p) 

i =  1 J 

(1 - a'i)a'[Z(i) - V ]  

i =  1 3 
t - E  x x (ai-' - a k - ' ) d [   Y ( j )  - v ] ]  

k - 1  ai 

i = l  j = o , . , + l  

=: Az-Ay .  

By Lemma 3.4, 

Using this in  Lemma 2. lb  (with = 1 - P i )  shows Az 2 0. 
Also, by Lemma 3.4, 

E [y 2 a j [Y( j ) - v ]  = E  a i [ Y ( i ) - v ] ~ O .  

Using this in  Lemma 2.la shows Ay I 0. The proof is 
complete. rn 

Theorem 3.4: There exists a  policy a such that X" dominates 
every  machine in X .  

Proof: Let v1 > vz > * - * -+ - 03. By Lemma  3.4 there 
exist policies a(vi) and  stopping  times <vi) + 03 a s .  (since the 
terms in 3.7 become positive) such that ' K ( Y ~ + ~ )  agrees with r (v i )  
during 1, * * , 7(vi)  - 1.  Then the unique strategy a which 
extends all the r (v i )  is the  required policy. rn 

We now return  to  the bandit problem with arrivals introduced at 
the beginning  of this section. In addition to assumption i)-iv), we 
impose  the  following. 

v) A([) ,  t = 1, 2, - * * , is a sequence of i.i.d.  random 
variables. 

At time t consider  the  ith  machine X i ,  after it has been operated 
s - 1 = t i ( f )  times. (Xi  may be the  machine  available at  time 1 or 
any machine that arrived  before t . )  This  machine,  together with 
the amval process { A ( - ) } ,  defines a superprocess X@) .  We 
define  the index vi(s) of X i  to be the index  of the dominant 

i = l  j = o , . , + l  1 ' k - '  i =  1 
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machine in Xi(s).  More directly, 

Assumption v) guarantees that the index depends only  on the 
machine type i ,  the machine time s, and the law  of the arriving 
process, not  on the process time r. 

Theorem 3.5: For the bandit problem with arrivals, it  is 
optimal to operate at each time the available machine with  the 
largest current index. 

Proofi At any process time one is faced  with the superpro- 
cesses X i ,  i = 1,  - * , n(t). By Theorem 3.4 the dominant 
machine in X' has index (3.20). By Theorem 3.3 it is sufficient to 
restrict attention to these dominant machines, but then Theorem 
2.1 guarantees optmality of the index rule. 

E. Tax Problem with Arrivals 

The setup is exactly as in the arm-acquiring bandit problem, 
except that Xi@) is the tax when machine i is idle. We  study this 
by transforming it into an equivalent bandit problem as in Section 
II-B. The details are sufficiently different to require a separate 
treatment. 

The cost of a policy a is 

where 

li(s) : = O  if  machine i is available at  time 1 

=the process time when  machine i arrived, otherwise. 

Define new machines Z i  by Zi(s) = Xi@) - uXi(s + I), in 
terms of which 

so that the tax problem is equivalent to the arm-acquiring bandit 
problem with the machines Z'. 

Thus, the index for machine X i  in the tax problem after it has 
been operated s - 1 = t i( t)  times is 

f 7 - 1  

where 

P ( t )  : = xi(ti(r) + 1) - aXi(ti(t) + 2). 

Note that, since a may operate different machines, the sum in the 
numerator in (3.21) does not collapse as in (2.11). 

Theorem 3.6: For the tax problem with arrivals, an optimal 
policy is given by the index rule defined by (3.21). 

Remark 3.2: The indexes given by (3.20) and (3.21) are much 
more difficult to compute than those given by (2.10) and (2.1 l ) ,  
where no arrivals are considered. 

It should be clear that Theorems 3.4, 3.5, and 3.6 generalize in 
the obvious way to the situation where time is continuous and the 
discipline is preemptive or nonpreemptive, as in Sections Ill-A 
and III-B. Assumption v) must  now be read to mean  that new 
machines arrive in a Poisson stream. 

IV. CALCULATING THE INDEX 

In this section we develop algorithms for calculating the various 
indexes in the case where the machine is described by  a finite state 
Markov chain. 

A .  Discrete Time Bandit Problem 

Let X@), s = 1,  2, * * e ,  be a Markov chain with state space { 1,  
2, e ,  K}. Let r(i) be the reward when x(t) = i .  Suppose the 
state is observed. Then one has the standard machine {X(s), F(s)} 
where 

X(s) = W s ) ) ,  F O  = u{x(l) ,  x(2), ' * 9 x(s)). 

From (2.10) we see that if x(s) = i, then the corresponding index 
v(s) = vi where 

Here Ef: = E{Jlx(l) = i } ,  and T ranges over all stopping times 
of (x(.)}. We wish to calculate vi,  i = 1 ,  2, - * ,  K. 

Lemma 4.1: Suppose v 1  2 v2 2 * . 2 vK. Then an optimal 
stopping time for (4.1) is 

q=min { t> l   Ix( t )@{1 ,  e . . ,  i]]. 

For a direct proof see Gittins [7, p. 1541; alternatively one can 
give a slight modification of the proof of Lemma 3.1. The same 
arguments also give the following. 

Lemma 4.2: Suppose v l  1 v2 2 - 2 vK. Then an optimal 
stopping time for (4.1) is 

7 i = m i n  {t>lIx(t)@{l, e - . ,  i-l]). 

We use these results to find in sequence the state with the largest, 
second largest, third largest index, etc. Let P = {Pi,} denote the 
K X K transition matrix of the chain { ~ ( t ) } .  

Theorem 4.1: Suppose v l  2 v2 2 - 2 urn- for some m. 
Then 

r n m  

where am = (CY?, e ,  a;)T, 0" = (@;, - * * , P;)=are given by 

am :=a[ l -aPm]- ' r ,  8" :=a[ I -aPm]-L1  

with 

pt = PV j < m  c 0 j z m  
r : = ( r ( l ) ,  . . a ,  r(K))T, 1 : = ( I ,  - - e ,  l ) r .  

Proofi Suppose v, = maxi,, v i .  By Lemma 4.2 
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easilv as with 
r=min { t> l   IX( t )B{ l ,  - . - ,  m - I } } .  

Hence, 
7- 1 

"7 : =E;  a'r(x(r)) = ar(i) + a P+X? 
I j <  rn 

which concludes the proof. 

B. Continuous Time, Nonpreemptive Bandit Problem 

Let $( t ) ,  t 2 0,  be a continuous parameter, right-continuous 
purejump process withjump  times0 = To < TI < such that 
{x(s): = $( T,- ,)}, s = 1,2 ,  * . . , is a Markov chain with values 
in { 1, * . , K }  and K x K probability transition matrix P .  

Let a(s): = T, - T s - l .  Let r( i )  be the reward when $(t)  = i .  
The nonpreemptive discipline means that a machine must be 
operated until its next jump  time. In terms of the notation of 
Section ILI-A, this gives an abstract machine {X(s), ds), F(s)) 
where X@): = r(x(s)), F(s): = a(x(i), a(i - 1); i 5 s] is the 
information available after the machine has been operated for (S 
- 1) periods. 

Finally, it is assumed that the conditional distribution of 4 s )  
given F(s) depends only on x@). In other words, $(t) is a semi- 
Markov process. Let 

b; :=E{a"'"Ix(s)=i). 

From (3.4) we see after evaluating the integrals that if x(s) = i, 
the corresponding index v(s) = vi where 

E, [g a " l ) + ~ " + ~ S - l ) [ l  -a")]r(x(s)) 

E, [g a ~ ~ ) + " ' + ~ ~ - l ) [ l - a n " ) ]  

s= 1 3 
s= 1 3 

vi : = max 
7 >  I 

where Ed: = Edflx(1) = i } .  
As in the preceding section, one obtains the following result. 
Theorem 4.2: Suppose vI  I * - * 2 I,- Let 

Then 

where 

" i  
m 

max v i=  max - 
r z m  rzrn /37 

=(1 -bJ+ b; E PqPj". 
j < m  

C. Discrete Time Tax Problem 

Since the equivalence of this problem to the discrete time bandit 
problem is established in Section II-C, the  index  can  be written 

under the same conditions as Section IV-A, except that c(i) now 
denotes the cost per unit time when x(t) = i .  The algorithms 
developed in the preceding section apply to this case with obvious 
modifications. 

V. AN APPLICATION 

Consider a network of queues indexed i = 1 ,  - - e ,  K .  A single 
server is to be assigned to service jobs in any queue. If this server 
is allocated to a job in queue i, that job must be completed before 
the server may be reassigned. In other words, the service 
discipline is nonpreemptive. A job in queue i requires a random 
amount of service time d i ) .  All service times are independent, 
and service times for  jobs in the same queue are identically 
distributed. 

Once a job in a queue i is completed, then with a fixed 
"routing" probability Pu the job joins queue j ,  and with 
probability Pio it leaves the network. 

Let nj(t) be the number of customers waiting  in queue i at time 
t .  (The job being serviced is not counted in the ni.) Let c(i) > 0 be 
constants. Consider the problem of assigning the single server to 
the jobs in such a way as to minimize the waiting cost 

E i," a' c(i)ni(t) dt. 
i 

This semi-Markov decision problem can readily be recast as a 
tax problem. One associates to each job a machine X = {X(s), 
ds), F(s)} in the following manner. Suppose that after (s - 1) 
service completions the job is in queue 4s) E { 1 ,  - - * ,  N }  . If the 
job leaves the network after (s - 1 )  service completions, let x(s) 
= 0. Let F(s): = a{x(l), * e ,  x($); let 4 s )  have the same 
distribution as a(x(s)) if x(s) > 0, 40)  = 0 if x(s) = 0. The 
reformulation as a tax problem is complete if one interprets 
assignment of the single server to a job as the operation of the 
corresponding machine. 

Observe that {x(s)] is a Markov chain with absorbing state 0 
and (K + 1 )  X (K + 1) transition matrix P .  One defines an index 
as in (3.5). If x(s) = i ,  the index is 

= 0 ,  i=O (5.2) 

where Ef: = ECflx(1) = i ]  and 40):  = 0. Note that yi > 0 for i  
> 0. (The index (5.2) can be calculated using the algorithm given 
in the preceding section.) Theorem 3.9 now gives the following 
result. 

Theorem 5.1: The index rule defined by the index (5.2) 
minimizes the waiting cost (5.1). 

The problem discussed above was motivated by the work of 
Klimov [ 1 3 ] ,  [ 141. Klimov permits Poisson arrivals, and he 
minimizes the average waiting cost per unit time. 

VI.  CONCLUSIONS 

The multiarmed bandit problem is perhaps the simplest 
nontrivial problem in stochastic control for which a reasonably 
complete analysis is available. Most previous investigations of 
this problem were conducted within the framework of dynamic 
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programming. That framework has tended to hide the essential 
structure of the problem. In this paper the problem was studied 
using what, following Gittins [7], might be d e d  a “forwards 
induction.” argument. That argument has allowed us to dispense 
with the resmctions to Markovian dynamics and to complete state 
observations. Removal of these restrictions may increase the 
range of applications. 

The paper also proposes a more general formulation of 
superprocesses. These are bandit problems in which a control 
variable is present. Further study of superprocesses may reveal an 
interesting class of applications. 

Finally, the paper formulates a  new class of problems which we 
have called the tax problem. In the discounted case considered 
here, the tax and bandit problems are equivalent; they are not 
equivalent when there is no discount. In situations involving 
allocation of a single resource where waiting costs are significant, 
the tax problem appears to provide a more convenient model. 

APPENDIX  A 

Let (X(s), F(s)} be a machine with 

E a‘IX(t)I <m. 
m 

(7.1) 
1 

Let T be the set of all stopping times r, s < I 03. We will show 
that there exists r* in T that achieves 

Let Y(t): = X(t) - y(s). Then, 

and the problem is equivalent to finding r* in T such that 

But this problem is very similar to Snell’s problem discussed in 
Neveu [22]. Our problem is simpler, since 

1 )  the associated martingale is uniformly integrable because of 

2) we pennit r* to be infinite. 

The following result can be proved in a  way parallel to the 
proof of Proposition VI-1-3 in [22]. 

Theorem 7.1: The stopping rule r* defined below  is optimal 
for (7.2) and (7.3): 

(7.1); 

d[X(r)-y(s)](F(t) 

APPENDIX B 

The proof of Lemma 2.1 is given below. 
Define for n = 1, 2, . e - ,  

Set a(n)/a(n - 1): = 0 on (a(n - 1) = 0). Notice that since 
a(n)/a(n - 1) E [O, 11, one has 

where l(A(n)) is the indicator of A(n). 
From (7.4j-one finds for n > 1, id using Z(n): = 1(A( 1) fl . - n ~ ( n ) ) ,  

m 

Z(t)X(t)+Z(n- 1 )  - a(n - 1 )  t = n  

Z(t)X(t) + Z(n - 1 )  - a(n - 1) 

= E x Z(t)X(t) + Z(n)X(n) [ :r : 
= cp(n). 

Therefore, 

for all t>s. 
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where 7 is the {F(-))-stopping time defined by 

7=n  onA(1) n - . a  n ~ ( n - 1 )  n ~ q n ) .  

But (7.5) contradicts the assumption of Lemma 2.1. This proves 
Part a). 
Part b) follows by observing that 

439 

and that by part a), the first  term on the right-hand side of this 
equality must be nonpositive. 
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