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Diffusions between A and B have to go through the bottleneck ,while C is easily 
reachable from B. The Markov matrix defining a diffusion could be given by a 
kernel , or by inference between neighboring nodes. 

The diffusion distance accounts for preponderance of inference . The shortest 
path between A and C is roughly the same as between B and C . The diffusion 
distance however is larger since diffusion occurs through a bottleneck.







Original data set Embedding of data into the first
3 diffusion coordinates



The long term diffusion of heterogeneous material is remapped below . The left side has a higher 
proportion of heat conducting material ,thereby reducing the diffusion distance among points , the bottle 
neck increases that distance



Diffusion map into 3 d of the heterogeneous graph 
The distance between two points measures the diffusion 
between them.



The natural diffusion on the surface of the dumbell is mapped out in 
the embedding . Observe that A is closer to B  than to C ,and that 
the two lobes are well separated by the bottleneck.



Diffusion Wavelets
RR Coifman & MM

Eigenfunctions are like global Fourier Analysis on the data set, they live in different 
“frequency bands” but are not localized. We would like to have elements localized 
both in frequency and space (compatibly with Heisenberg principles), and critically 
sampled at the “rate” corresponding to the frequency band.

Where are the “frequencies”?
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Eigenfunctions of the Laplacian are like global Fourier modes.

Drawbacks of global Fourier analysis for function approximation, are 
well-known even in 1D!
What about building multiscale localized bases, or wavelets?



We have frequencies: the eigenvalues of the diffusion T.
What about dilations , translations , downsampling?
The geometry seems hard to handle, let's think in terms of functions on the set 
X.

Dilations:
Use the diffusion operator T and its dyadic powers as dilations.

Translations and downsampling:
Idea: diffusing a basis of “scaling functions” at a certain scale by a power of T 
should yield a redundant set of coarser “scaling functions” at the next coarser 
scale: reduce this set to a Riesz (i.e. well-conditioned)-basis. This is 
downsampling in the function space, and corresponds to finding a well-
conditioned subset (downsampling) of “translates”.

Dilations, translations, downsampling



         Construction of diffusion multiresolution



Generalized Fast Multipoles
In Fast Multipole Methods [Rohklin-Greengard, Beylkin-Coifman-Rohklin], 
the Green's function is given and is compressed. This is not readily available 
in non-homogeneous problems.
We started from the local, differential operator, and “discover” its multiscale, 
multipole expansion through its iterates, and compress “on the go”. Similar to 
multigrid [Brandt, Hackbusch...], but keeping coarse equations exact at each 
scale.
We can then apply the Green's function in O(n log(n)) to any vector by 
Schultz's method:










