
Introduction Classical formulation Computational issues Extensions Example Discussion

Multi-armed Bandit Problems

Bruno Castro da Silva

Computer Science Department
University of Massachusetts at Amherst

August, 2008

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Summary

I Introduction
I Classical formulation
I Properties
I Computational issues
I Extensions
I Example
I Discussion

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Definition

I Multi-armed bandit (MAB) problems
I sequential resource allocation
I among competing (mutually exclusive) projects

I Difficulty related to conflict between
I allocating resources that yield good rewards
I trying “not so promising” projects

I but maybe with better future prospects

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Examples

I control theory problems
I allocating researchers to projects
I clinical trials
I sensor management

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Definition

I Classical definition
I single resource
I allocated to one of many competing projects (bandits,

arms)
I project w/ resource can change its state
I other projects remain frozen
I discrete time, no switching costs

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Solving

I In general this is solvable via Dynamic Programming
I backwards induction
I V ∗(s,N) = RN(s), ∀s
I V ∗(s,N − 1) =

max RN−1(s,a) + γ
∑

s′ T (s,a, s′)V ∗(s′,N)

I Bellman equations
I V ∗(s) = maxa R(s,a) + γ

∑
s′ T (s,a, s′)V ∗(s′)

I very general stochastic optimization problems
I VI, PI, RL
I Curse of dimensionality

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Solving

I But MAB are simpler and allow for “index-type”
solutions

I for each bandit associate a dynamic allocation index
(DAI)

I depends only on that bandit
I one k -armed bandit vs k single-armed bandits

I at each time, choose the bandit with highest DAI
I leads to optimal allocation policy
I DAIs are also known as “Gittins Indices”

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Classical formulation

I (single-armed) bandit process
I described by pair random of sequences

I {X (0),X (1), . . .}
I {R(X (0)),R(X (1)), . . .}

I X (n): state after arm has been operated n times;
I R(X (n)): reward obtained on the n-th operation
I state evolution:

X (n) = fn−1(X (0), . . . ,X (n − 1),W (n − 1))
I thus, arm not necessary Markov
I W (n): independent sequence of RVs; independent

also from X (0)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Classical formulation

I multi-armed bandit process
I k independent arms
I one controller
I controller operates exactly one arm at a time
I machines described by time-dependent sequences:

I {Xi(Ni(t)),Ri(Xi(Ni(t)))} ∀i∀t
I Ni(t): number of times machine i has been operated

up to time t
I Ni(t) is the “local time” of machine i

I control is U(t) = {U1(t), . . .Uk (t)}, ie, in the form
{00 . . . 1 . . . 000}

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Classical formulation

I System evolution
I Xi(Ni(t + 1)) =

I fNi (t)(Xi(0), . . . ,Xi(Ni(t)),Wi(Ni(t))) if Ui(t) = 1
I Xi(Ni(t)) if Ui(t) = 0

I Ni(t + 1) =
I Ni(t) + 1 if Ui(t) = 1
I Ni(t) if Ui(t) = 0

I Ri(t) = Ri(X (Ni(t)),Ui(t)) =
I Ri(Xi(Ni(t))) if Ui(t) = 1
I 0 if Ui(t) = 0

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Classical formulation

I Scheduling policy
I γ = (γ1, γ2, . . .)

I such that U(t) = γt(Z1(t), . . .Zk (t),U(0), . . . ,U(t − 1))

I and Zi(t) = {Xi(0), . . .Xi(Ni(t))}

I In other words, policy might depend on full history of
arms’ states and previous actions

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Classical formulation

I Goal is to find scheduling policy γ that maximizes

Jγ = E
(∞∑

t=0

βt
k∑

i=1

Ri(Xi(Ni(t)),Ui(t))
∣∣∣ Z (0)

)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Forward induction

I simplest policy: myopic decisions (1 look-ahead)
I not optimal, in general
I T -steps look-ahead

I take decisions that maximize expected reward for the
next T steps

I Generalization: do not fix T
I let τ be the number of look-ahead steps
I τ is a RV that depends at each time on how the

system evolves
I τ is considered a stopping time

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Forward induction
I in order to maximize Jγ, we must

I choose a rule γ for taking a sequence of decisions
I choose a value for τ

I such that that rule, when used for τ steps, gives the
max Jγ

I This extension of T -steps look-ahead works by
I At t = 0, given Z (0), select γ1 and τ1
I Apply γ1 for τ1 steps
I repeat, choosing the next γt , τt , conditioned on the

new information gained
I notice: decisions based only on current states of

arms
I “forward” because keeps deciding next policies for

the future

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Forward induction

I in general this is not optimal
I route choosing example
I problem are irrevocable decisions
I some alternatives available at some stage are not

available later
I if any decisions made are not irrevocable, forward

induction is optimal
I every arm not used is kept frozen
I thus can deliver the same sequence of rewards later

on (up to β)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Forward induction
I Gittins proved that the following index is optimal

vXi (xi(0)) = max
τ>0

E
(∑τ−1

t=0 β
tRi(Xi(t)) | xi(0)

)
E
(∑τ−1

t=0 β
t | xi(0)

)
I suppose we are allowed to take decisions only while

they’re worth it,
I then vXi gives a “retirement” value

I ie, a value in which we are indifferent to continuing
operating i or quitting

I only quit i (and work on some j) if j has a better
prospect than the retirement offered

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Forward induction

I When in decision stage l , for each arm i ,
I and considering information

x l
i (ω) = (xi(0), . . . , xi(Ni(τl(ω))))),

vXi (x
l
i (ω)) = max

τ>τl (ω)

E
(∑τ−1

t=τl (ω)
βtRi(Xi(Ni(τl) + t − τl(ω))) | x l

i (ω)
)

E
(∑τ−1

t=τl (ω)
βt | x l

i (ω)
)

I easier if arm is Markov

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Computational issues

I Focus on Markov arms
I State space Si = {1,2, . . . ,∆i }

vXi (xi(t)) = max
τ>t

E
(∑τ−1

t ′=t β
tRi(Xi(t ′)) | xi(t)

)
E
(∑τ−1

t ′=t β
t | xi(t)

)
I Need to compute v for each state of each arm

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Computational issues

I Offline approach: compute indices for all states, all
machines

I Online approach: only index for the last used
machine

I Continuation/stopping sets
I remember, v is retirement value
I only quit machine i if reach state from which j would

be better
I Ci(xi): all states with index higher than xi ’s
I Si(xi): all states with index lower than xi ’s

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Offline calculation
I Computing Ci(xi) and Si(xi)

I ordering on states: l1, l2, . . . , l∆i s.t.
I vXi (l1) ≥ vXi (l2) ≥ . . . ≥ vXi (l∆i)

I For machine i , set l1 = arg maxxi Ri(xi)
I Now consider probabilities in P i only for transitioning

to “better” states;
I Given reward matrix Ri (reward per state);
I For each state xi , calculate Di ,n

xi
I expected discounted reward considering next (better)

states
I Calculate Bi ,n

I expected total “discounts”, considering probabilities
of transitions

I vXi (xi) =
Di ,n

xi

Bi ,n
xi

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Online calculation

I Also uses the continuation/stopping sets approach
I Assume we are operating machine i in state a

I now, we are given opportunity to switch to state xi
I maximize expected discounted reward over infinite

horizon

V (a) = max
{
Ri(a)+β

∑
b∈{1,...,∆i }

i

P i
a,bV (b), R(xi)+β

∑
b∈{1,...,∆i }

P i
xi ,b

V (b)
}

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Online calculation

I Now Ci(xi) is the set of states with expected reward
larger than V (xi);

I vXi (xi) = (1 − β)V (xi)

I Questions:
I Why maximize infinite horizon is equivalent?
I Why (1 − β) and not 1−β

β ?

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Superprocesses
I Same as before, but now each arm i receives control

input Ui ∈ {0, . . . ,Mi }

I Ui = 0 is a freezing action; rest are continuation
actions

I If control policies are fixed, degenerates to regular
MAB

I Otherwise, state evolution are rewards depend on
current state and on current control input

I Not a Markov Chain, but a Markov Process
I Scheduling policy γ controls exactly one machine

Jγ = Eγ
(∞∑

t=0

βt
k∑

j=1

Rj(Xj(Nj(t)),Uj(t)) | Z (0)
)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Superprocesses
I Time evolution of arm is controlled
I More complex than MAB; in general, Gittins Indices

not optimal
I Unless each arm (desc. by seq. X states, rewards)

has a dominating arm

L(X , µ) = maxτ>0
(τ−1∑

t=0

βt [R(X (t)) − µ]
)

I X dominates Y iff
I L(X , µ) ≥ L(Y , µ) ∀µ ∈ IR

I µ is “retirement” value; L(X , µ) the expected gain over µ

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Superprocesses

I If there is dominance, optimal because
I No matter how big the offered retirement is (to quit i),

there’s always a better arm j
I In practice, this is a quite restrictive assumption

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Arm-acquiring bandits

I Regular MAB, but new arms can be created
I Gittins Indices are optimal

I Decisions are not irrevocable
I Decisions based on indices with Ki arms consider all

of them
I But decisions prior to this did not have all Ki arms

available;
I no way a prior decision could be “wrong”

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Switching penalties
I Regular MAB, but there is a cost c for switching arms
I Gittins Indices are not optimal (example in book)
I If the index is

vs
Xi

(xj(0)) = max
τ>0

E
(∑τ−1

t=0 β
tRj(t) − c | xj(0)

)
E
(∑τ−1

t=0 β
t | xj(0)

)
I then only qualitative results are known [11]

I the general nature of the scheduling policies is not known

I solution usually requires full use of DP (backwards
induction)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Multiple plays
I Regular k -processes MAB, but is m processors
I At each time allocate each processor to exactly one

process
I No process being operated by more than one

processor
I Only processes being processed generate reward
I Allocation according to m highest indices: not

optimal
I Optimal if indices are sufficiently separated (C1,

p.141)
I How to guarantee this beforehand?

I For different criteria (eg: regret minimization) optimal
policies are known [7,8]

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Restless bandits
I k machines, m processors
I machines’ states evolve over time even when not

being processed
I reward of non-processed machines might be

assumed to be zero
I performance criterion is

Jγ = Eγ
(∞∑

t=0

βt
k∑

j=1

Rj(Xj(Nj(t)),Uj(t)) | Z (0)
)

I Goal is to find policy that maximizes infinite horizon
expected discounted reward

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Restless bandits

I In general, Gittins Indices are not optimal
I But for some other optimization criterion, indices are

optimal
I eg: infinite horizon average

reward-per-time-per-machine criterion

1
k

(
lim

T→∞

1
T

E
(T∑

t=1

k∑
i=1

Ri(Xi(t − 1),Ui(t))
))

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Restless bandits

I Gittins indices for RB are related to “gift” values given
to non-processed machines

I Argument is similar to that of the “retirement” value
I index is a “gift” value that makes us indifferent to

running or not the machine
I it is only worth to run the machine if the expected gain

is greater than the “gift” value
I this values allow us to index all machines

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example

I find one stationary target hidden in one of k cells
I prior probability of the target in cell i is pi(0)

I sensor can look into just one cell at a time
I sensor is imperfect

I P(sensor finds target in i | target is in cell j) = δi ,jqj
I where δ is the Kronecker delta function;
I qj (?) is probability of false positive

I reward upon completion is βt (ie, we want to find the
target ASAP)

I which sensor to activate at each time?

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example

I let pi(t) be the posterior probability of target being in
cell i

I pi(t) is state of cell (arm) i at time t

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example
I For a policy γ, expected reward is

=
∞∑

t=0

βτP(target is found at τ, analyse correct cell)

=
∞∑

t=0

βτ
k∑

i=1

pi(t)qiPγ(U(t) = ei)

=
∞∑

t=0

βτ
k∑

i=1

Ri(pi(t),ui(t))

I where reward is given for i iff i is activated at t (U(t) = i)

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example
I Unfortunately, updates in pi affect all other

probabilities (states)
I Thus, not a regular MAB
I Easy to solve if we consider unnormalized

probabilities

pi(t + 1)

= pi(t) if ui(t) = 0
= pi(t)(1 − qi) if ui(t) = 1

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example
I We try to maximize the long-term expected reward

I remember, Ri(pi(t),ui(t)) = pi(t)qi iff ui(t) = 1, zero
otherwise

∞∑
t=0

βt
k∑

i=1

Ri(pi(t),ui(t))

I Gittins Index of every machine is always achieved at τ = 1
(?), so:

I vXi (pi(t)) = pi(t)qi
I which is by the definition of GI, for one-step

look-ahead
I β can be ignored from the denominator because it is

constant
Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Example

I If sensor operates in M modes: superprocess
I If there is cost to switch targetting area: MAB w/

switching penalties
I If there are m sensors: MAB w/ multiple plays
I If target is moving: m sensors, restless bandit

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Conclusion

I Gittins indices simplify the policy calculation for a
class of sequential decision problems

I MAB are very simple problems, but might be
extended

I extensions are often related with one another
I arm-acquiring→ superprocess [240]
I switching costs→ restless bandits [91]
I Tax problem (minimization of cost of frozen

machines)→ MAB

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

Introduction Classical formulation Computational issues Extensions Example Discussion

Thanks

Questions?

bsilva@cs.umass.edu

Bruno C. da Silva Computer Science Department University of Massachusetts at Amherst

Multi-armed Bandit Problems

	Introduction
	Classical formulation
	Computational issues
	Extensions
	Example
	Discussion

