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Introduction

Definition

» Multi-armed bandit (MAB) problems
» sequential resource allocation
» among competing (mutually exclusive) projects
» Difficulty related to conflict between
» allocating resources that yield good rewards
» trying “not so promising” projects
» but maybe with better future prospects
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Introduction

Examples

v

control theory problems
allocating researchers to projects
clinical trials

sensor management
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Introduction

Definition

» Classical definition
» single resource
> allocated to one of many competing projects (bandits,
arms)
» project w/ resource can change its state
» other projects remain frozen
» discrete time, no switching costs
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Introduction

Solving

» In general this is solvable via Dynamic Programming

» backwards induction
» V*(s,N) = Rn(s), Vs
» V'(s,N-1) =
max An-1(s,a) +yXs T(s,a 8)V*(s',N)

» Bellman equations

» V*(s) =maxaR(s,a) +y Xy T(s,as)V*(s)
» very general stochastic optimization problems
» VI, Pl, RL

» Curse of dimensionality
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Introduction

Solving

» But MAB are simpler and allow for “index-type”

solutions

» for each bandit associate a dynamic allocation index

(DAI)
depends only on that bandit

» one k-armed bandit vs k single-armed bandits
at each time, choose the bandit with highest DAI
leads to optimal allocation policy
DAls are also known as “Gittins Indices”
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Classical formulation

Classical formulation

» (single-armed) bandit process
» described by pair random of sequences
-~ {X(0),X(1)....}
~ (R(X(0)). R(X(1))...}
» X(n): state after arm has been operated n times;
» R(X(n)): reward obtained on the n-th operation
~ state evolution:
X(n) = fou1(X(0), ..., X(n=1), W(n-1))
» thus, arm not necessary Markov
» W(n): independent sequence of RVs; independent
also from X(0)
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Classical formulation

Classical formulation

» multi-armed bandit process

» k independent arms
one controller
controller operates exactly one arm at a time
machines described by time-dependent sequences:
> AX(Ni(1), Ri(Xi(Ni(1)))} Vit
» N;(t): number of times machine i has been operated
up to time ¢
» N;(t) is the “local time” of machine i
control is U(t) = {U;(t),... Uk(t)}, ie, in the form
{00...1...000}
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Classical formulation

Classical formulation

» System evolution
- X(Ni(t+1)) =

* Iny (Xi(0),. .. Xi(Ni(1)), Wi(Ni(t))) it Uj(t) =1
- Xi(Ni(D)) it Ui(t) = 0
> N,(t + 1) =
- Ni(1) + 1 it Uy(1) = 1
- Ni(1) it Ui(f) = 0
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Classical formulation

Classical formulation

v

Scheduling policy

y= 7.

such that U(t) = y«(Zi(t),... Z(t), U(0),..., U(t - 1))
and Z(t) = {Xi(0),... Xi(Ni(1))}

In other words, policy might depend on full history of
arms’ states and previous actions
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Classical formulation

Classical formulation

» Goal is to find scheduling policy y that maximizes

(o)

I = E(Y B Y RGN UD) | Z(0)

t= i=1
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Classical formulation

Forward induction

» simplest policy: myopic decisions (1 look-ahead)
» not optimal, in general
» T-steps look-ahead
» take decisions that maximize expected reward for the
next T steps
» Generalization: do not fix T
» let  be the number of look-ahead steps

» 7is a RV that depends at each time on how the
system evolves

» 7 is considered a stopping time
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Classical formulation

Forward induction

» in order to maximize J”, we must

» choose a rule y for taking a sequence of decisions
» choose a value for

» such that that rule, when used for r steps, gives the
max J”
» This extension of T-steps look-ahead works by
» Att =0, given Z(0), select y1 and 74
» Apply y4 for 71 steps
> repeat, choosing the next y;, 7, conditioned on the
new information gained
» notice: decisions based only on current states of
arms
» “forward” because keeps deciding next policies for
the future
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Classical formulation

Forward induction

» in general this is not optimal
> route choosing example
» problem are irrevocable decisions
» some alternatives available at some stage are not
available later
» if any decisions made are not irrevocable, forward
induction is optimal
» every arm not used is kept frozen
» thus can deliver the same sequence of rewards later
on (up to B)
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Classical formulation

Forward induction

» Gittins proved that the following index is optimal

V)C(Xi(o))zmaxE( LA R(X(D) | x(0)
PO E(Zns | 6(0)

» suppose we are allowed to take decisions only while
they’re worth it,
~ then vy, gives a “retirement” value
» ie, a value in which we are indifferent to continuing
operating i or quitting
» only quit / (and work on some j) if j has a better
prospect than the retirement offered
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Classical formulation

Forward induction

» When in decision stage /, for each arm i,
» and considering information

x!(w) = (x(0),.... x(Ni(T/(w))))),

tR' X N T —T/\w lw
) — max, S RN L r@) 1 )
™>71)(w) (Zt () ﬁ | Xl.l(a)))

» easier if arm is Markov
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Computational issues

Computational issues

» Focus on Markov arms
» State space S; = {1,2,...,A}}

E(ZiBR(X() | (D))
VX( ())_m_rf‘t (th tﬁt | X/(t))

» Need to compute v for each state of each arm
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Computational issues

Computational issues

» Offline approach: compute indices for all states, all
machines

» Online approach: only index for the last used
machine

» Continuation/stopping sets
» remember, v is retirement value
> only quit machine i if reach state from which j would
be better
» Cj(x;): all states with index higher than x;’s
» Si(x;): all states with index lower than x;’s
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Computational issues

Offline calculation
» Computing Cj(x;) and S;(x;)
> ordering on states: /1, b, ..., /I, S.t.
> VX,.(/1) > VXI.(IQ) > ... 2 V)(,(IA/)
» For machine i, set /; = arg max,, Ri(x;)
~ Now consider probabilities in P’ only for transitioning
to “better” states;
Given reward matrix A; (reward per state);
~ For each state x;, calculate D,
» expected discounted reward considering next (better)
states
Calculate B""
» expected total “discounts”, considering probabilities
of tran,sri,tions

A\

v
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Computational issues

Online calculation

» Also uses the continuation/stopping sets approach
» Assume we are operating machine i in state a

» now, we are given opportunity to switch to state x;
» maximize expected discounted reward over infinite
horizon

V() = max| +,8 Z ), ROQ)+B Y. PL,V(b)]
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Computational issues

Online calculation

» Now Cj(Xx;) is the set of states with expected reward
larger than V(x;);

> vx(xi) = (1 -8)V(x)

» Questions:

> Why maximize infinite horizon is equivalent?
> Why (1 — ) and not 1%3?
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Extensions

Superprocesses

» Same as before, but now each arm i receives control
input U; € {0, ..., M}

» U; = 0 is a freezing action; rest are continuation
actions

» If control policies are fixed, degenerates to regular
MAB

» Otherwise, state evolution are rewards depend on
current state and on current control input

» Not a Markov Chain, but a Markov Process
» Scheduling policy y controls exactly one machine

00 k

=B B ) RGN Y1) | Z(0))
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Extensions

Superprocesses

» Time evolution of arm is controlled

» More complex than MAB; in general, Gittins Indices
not optimal

» Unless each arm (desc. by seq. X states, rewards)
has a dominating arm

-1
L(X,p) = maxeo( Y AITR(X(1) - u])
t=0
» X dominates Y iff

» L(X,p) 2 L(Y,u)  VueR

» pis “retirement” value; L(X, 1) the expected gain over p
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Extensions

Superprocesses

» If there is dominance, optimal because

> No matter how big the offered retirement is (to quit /),
there’s always a better arm j

» In practice, this is a quite restrictive assumption
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Extensions

Arm-acquiring bandits

» Regular MAB, but new arms can be created

» Gittins Indices are optimal
» Decisions are not irrevocable
» Decisions based on indices with K; arms consider all

of them
» But decisions prior to this did not have all K; arms
available;
» no way a prior decision could be “wrong”
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Extensions

Switching penalties

» Regular MAB, but there is a cost ¢ for switching arms
Gittins Indices are not optimal (example in book)
If the index is

v

v

s E(SEhBR(-c | x(0)
v (%j(0)) = max E(ZhB | x(0)

v

then only qualitative results are known [11]

v

the general nature of the scheduling policies is not known

\4

solution usually requires full use of DP (backwards
induction)
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Extensions

Multiple plays

» Regular k-processes MAB, but is m processors

» At each time allocate each processor to exactly one
process

» No process being operated by more than one
processor

» Only processes being processed generate reward

» Allocation according to m highest indices: not
optimal

» Optimal if indices are sulfficiently separated (C1,
p.141)

» How to guarantee this beforehand?

» For different criteria (eg: regret minimization) optimal

policies are known [7,8]
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Extensions

Restless bandits

k machines, m processors

machines’ states evolve over time even when not
being processed

reward of non-processed machines might be
assumed to be zero

performance criterion is

v

v

v

v

o0 k

S =E( Q8 ) RGN, U(h) | Z(0))

t=0 j=1

v

Goal is to find policy that maximizes infinite horizon
expected discounted reward
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Extensions

Restless bandits

» In general, Gittins Indices are not optimal

» But for some other optimization criterion, indices are
optimal
> eg: infinite horizon average
reward-per-time-per-machine criterion

(I[nw? iiﬁ, Xi(t - 1), Ui( ))))

t=1 i=1
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Extensions

Restless bandits

» Gittins indices for RB are related to “gift” values given
to non-processed machines
» Argument is similar to that of the “retirement” value
> index is a “gift” value that makes us indifferent to
running or not the machine
» it is only worth to run the machine if the expected gain
is greater than the “gift” value
> this values allow us to index all machines
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Example

v

find one stationary target hidden in one of k cells
prior probability of the target in cell i is p;(0)
sensor can look into just one cell at a time
sensor is imperfect
» P(sensor finds target in /| target is in cell j) = 6;;q;
» where § is the Kronecker delta function;
> q; (?) is probability of false positive

reward upon completion is 3! (ie, we want to find the
target ASAP)

which sensor to activate at each time?

v

v

v
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>
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Example

» let pi(t) be the posterior probability of target being in
cell i

» pi(t) is state of cell (arm) i at time t
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Example
» For a policy y, expected reward is

= Z B P(target is found at 7, analyse correct cell)
t=0

-k
= Y5 pihaP (U(t) = &)
=0 i=1

o K
- Z,BT Z Ri(pi(1), ui(t))
=0 i=

» where reward is given for i iff i is activated at t (U(t) = i)
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Example
» Unfortunately, updates in p; affect all other
probabilities (states)
» Thus, not a regular MAB

» Easy to solve if we consider unnormalized
probabilities

pi(t+1)
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Example

» We try to maximize the long-term expected reward
» remember, R;(pi(t), ui(t)) = pi(t)q; iff ui(t) =1, zero

otherwise
(o) k
Zﬁt Z Ri(pi(t), ui(t))
t=0 i=1

» Gittins Index of every machine is always achieved at r = 1
(?), so:
- vx(pi(t)) = pi(t)qi
» which is by the definition of Gl, for one-step
look-ahead
» 5 can be ignored from the denominator because it is
constant
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Example

v

If sensor operates in M modes: superprocess

If there is cost to switch targetting area: MAB w/
switching penalties

If there are m sensors: MAB w/ multiple plays
If target is moving: m sensors, restless bandit

v

v

v
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Discussion

Conclusion

» Gittins indices simplify the policy calculation for a
class of sequential decision problems

» MAB are very simple problems, but might be
extended
» extensions are often related with one another
» arm-acquiring — superprocess [240]
» switching costs — restless bandits [91]
» Tax problem (minimization of cost of frozen
machines) - MAB
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Discussion

Thanks

Questions?

bsilva@cs.umass.edu
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