Multi-armed Bandit Problems

Bruno Castro da Silva

Computer Science Department
University of Massachusetts at Amherst

August, 2008

Summary

- Introduction
- Classical formulation
- Properties
- Computational issues
- Extensions
- Example
- Discussion

Definition

- Multi-armed bandit (MAB) problems
- sequential resource allocation
- among competing (mutually exclusive) projects
- Difficulty related to conflict between
- allocating resources that yield good rewards
- trying "not so promising" projects
- but maybe with better future prospects

Examples

- control theory problems
- allocating researchers to projects
- clinical trials
- sensor management

Definition

- Classical definition
- single resource
- allocated to one of many competing projects (bandits, arms)
- project w/ resource can change its state
- other projects remain frozen
- discrete time, no switching costs

Solving

- In general this is solvable via Dynamic Programming
- backwards induction
- $V^{*}(s, N)=R_{N}(s), \quad \forall s$
- $V^{*}(s, N-1)=$ $\max R_{N-1}(s, a)+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) V^{*}\left(s^{\prime}, N\right)$
- Bellman equations
- $V^{*}(s)=\max _{a} R(s, a)+\gamma \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) V^{*}\left(s^{\prime}\right)$
- very general stochastic optimization problems
- VI, PI, RL
- Curse of dimensionality

Solving

- But MAB are simpler and allow for "index-type" solutions
- for each bandit associate a dynamic allocation index (DAI)
- depends only on that bandit
- one k-armed bandit vs k single-armed bandits
- at each time, choose the bandit with highest DAI
- leads to optimal allocation policy
- DAls are also known as "Gittins Indices"

Classical formulation

- (single-armed) bandit process
- described by pair random of sequences
- $\{X(0), X(1), \ldots\}$
- $\{R(X(0)), R(X(1)), \ldots\}$
- $X(n)$: state after arm has been operated n times;
- $R(X(n))$: reward obtained on the n-th operation
- state evolution:

$$
X(n)=f_{n-1}(X(0), \ldots, X(n-1), W(n-1))
$$

- thus, arm not necessary Markov
- $W(n)$: independent sequence of RV ; independent also from $X(0)$

Classical formulation

- multi-armed bandit process
- k independent arms
- one controller
- controller operates exactly one arm at a time
- machines described by time-dependent sequences:
- $\left\{X_{i}\left(N_{i}(t)\right), R_{i}\left(X_{i}\left(N_{i}(t)\right)\right)\right\} \quad \forall i \forall t$
- $N_{i}(t)$: number of times machine i has been operated up to time t
- $N_{i}(t)$ is the "local time" of machine i
- control is $U(t)=\left\{U_{1}(t), \ldots U_{k}(t)\right\}$, ie, in the form \{00... 1...000\}

Classical formulation

- System evolution
- $X_{i}\left(N_{i}(t+1)\right)=$
- $f_{N_{i}(t)}\left(X_{i}(0), \ldots, X_{i}\left(N_{i}(t)\right), W_{i}\left(N_{i}(t)\right)\right) \quad$ if $U_{i}(t)=1$
- $X_{i}\left(N_{i}(t)\right)$ if $U_{i}(t)=0$
- $N_{i}(t+1)=$
- $N_{i}(t)+1$
if $U_{i}(t)=1$
- $N_{i}(t)$

$$
\text { if } U_{i}(t)=0
$$

- $R_{i}(t)=R_{i}\left(X\left(N_{i}(t)\right), U_{i}(t)\right)=$
- $R_{i}\left(X_{i}\left(N_{i}(t)\right)\right)$
if $U_{i}(t)=1$
- 0
if $U_{i}(t)=0$

Classical formulation

- Scheduling policy
- $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$
- such that $U(t)=\gamma_{t}\left(Z_{1}(t), \ldots Z_{k}(t), U(0), \ldots, U(t-1)\right)$
- and $Z_{i}(t)=\left\{X_{i}(0), \ldots X_{i}\left(N_{i}(t)\right)\right\}$
- In other words, policy might depend on full history of arms' states and previous actions

Classical formulation

- Goal is to find scheduling policy γ that maximizes

$$
J^{\gamma}=E\left(\sum_{t=0}^{\infty} \beta^{t} \sum_{i=1}^{k} R_{i}\left(X_{i}\left(N_{i}(t)\right), U_{i}(t)\right) \quad \mid \quad Z(0)\right)
$$

Forward induction

- simplest policy: myopic decisions (1 look-ahead)
- not optimal, in general
- T-steps look-ahead
- take decisions that maximize expected reward for the next T steps
- Generalization: do not fix T
- let τ be the number of look-ahead steps
- τ is a RV that depends at each time on how the system evolves
- τ is considered a stopping time

Forward induction

- in order to maximize J^{γ}, we must
- choose a rule γ for taking a sequence of decisions
- choose a value for τ
- such that that rule, when used for τ steps, gives the $\max J^{\gamma}$
- This extension of T-steps look-ahead works by
- At $t=0$, given $Z(0)$, select γ_{1} and τ_{1}
- Apply γ_{1} for τ_{1} steps
- repeat, choosing the next γ_{t}, τ_{t}, conditioned on the new information gained
- notice: decisions based only on current states of arms
- "forward" because keeps deciding next policies for the future

Forward induction

- in general this is not optimal
- route choosing example
- problem are irrevocable decisions
- some alternatives available at some stage are not available later
- if any decisions made are not irrevocable, forward induction is optimal
- every arm not used is kept frozen
- thus can deliver the same sequence of rewards later on (up to β)

Forward induction

- Gittins proved that the following index is optimal

$$
v_{x_{i}}\left(x_{i}(0)\right)=\max _{\tau>0} \frac{E\left(\sum_{t=0}^{\tau-1} \beta^{t} R_{i}\left(X_{i}(t)\right) \mid x_{i}(0)\right)}{E\left(\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)\right)}
$$

- suppose we are allowed to take decisions only while they're worth it,
- then $v_{X_{i}}$ gives a "retirement" value
- ie, a value in which we are indifferent to continuing operating i or quitting
- only quit i (and work on some j) if j has a better prospect than the retirement offered

Forward induction

- When in decision stage I, for each arm i,
- and considering information

$$
\left.x_{i}^{\prime}(\omega)=\left(x_{i}(0), \ldots, x_{i}\left(N_{i}\left(\tau_{l}(\omega)\right)\right)\right)\right)
$$

$$
v_{x_{i}}\left(x_{i}^{\prime}(\omega)\right)=\max _{\tau>\tau_{l}(\omega)} \frac{E\left(\sum_{t=\tau_{l}(\omega)}^{\tau-1} \beta^{t} R_{i}\left(X_{i}\left(N_{i}\left(\tau_{l}\right)+t-\tau_{l}(\omega)\right)\right) \mid x_{i}^{\prime}(\omega)\right)}{E\left(\sum_{t=\tau_{l}(\omega)}^{\tau-1} \beta^{t} \mid x_{i}^{\prime}(\omega)\right)}
$$

- easier if arm is Markov

Computational issues

- Focus on Markov arms
- State space $S_{i}=\left\{1,2, \ldots, \Delta_{i}\right\}$

$$
v_{x_{i}}\left(x_{i}(t)\right)=\max _{\tau>t} \frac{E\left(\sum_{t^{\prime}=t}^{\tau-1} \beta^{t} R_{i}\left(X_{i}\left(t^{\prime}\right)\right) \mid x_{i}(t)\right)}{E\left(\sum_{t^{\prime}=t}^{\tau-1} \beta^{t} \mid x_{i}(t)\right)}
$$

- Need to compute v for each state of each arm

Computational issues

- Offline approach: compute indices for all states, all machines
- Online approach: only index for the last used machine
- Continuation/stopping sets
- remember, v is retirement value
- only quit machine i if reach state from which j would be better
- $C_{i}\left(x_{i}\right)$: all states with index higher than x_{i} 's
- $S_{i}\left(x_{i}\right)$: all states with index lower than x_{i} 's

Offline calculation

- Computing $C_{i}\left(x_{i}\right)$ and $S_{i}\left(x_{i}\right)$
- ordering on states: $I_{1}, l_{2}, \ldots, I_{\Delta_{i}}$ s.t.
- $v_{X_{i}}\left(l_{1}\right) \geq v_{X_{i}}\left(l_{2}\right) \geq \ldots \geq v_{X_{i}}\left(l_{\Delta_{i}}\right)$
- For machine i, set $I_{1}=\arg \max _{x_{i}} R_{i}\left(x_{i}\right)$
- Now consider probabilities in P^{i} only for transitioning to "better" states;
- Given reward matrix R_{i} (reward per state);
- For each state x_{i}, calculate $D_{x_{i}}^{i, n}$
- expected discounted reward considering next (better) states
- Calculate $B^{i, n}$
- expected total "discounts", considering probabilities of transitions
$-v_{X_{i}}\left(x_{i}\right)=\frac{D_{x_{i}}^{i, n}}{B_{x_{i}}^{i n}}$

Online calculation

- Also uses the continuation/stopping sets approach
- Assume we are operating machine i in state a
- now, we are given opportunity to switch to state x_{i}
- maximize expected discounted reward over infinite horizon

$$
V(a)=\max \left\{R_{i}(a)+\beta \sum_{b \in\left\{1, \ldots, \Delta_{i}\right\}^{i}} P_{a, b}^{i} V(b), R\left(x_{i}\right)+\beta \sum_{b \in\left\{1, \ldots, \Delta_{i}\right\}} P_{x_{i}, b}^{i} V(b)\right\}
$$

Online calculation

- Now $C_{i}\left(x_{i}\right)$ is the set of states with expected reward larger than $V\left(x_{i}\right)$;
- $v_{x_{i}}\left(x_{i}\right)=(1-\beta) V\left(x_{i}\right)$
- Questions:
- Why maximize infinite horizon is equivalent?
- Why $(1-\beta)$ and not $\frac{1-\beta}{\beta}$?

Superprocesses

- Same as before, but now each arm i receives control input $U_{i} \in\left\{0, \ldots, M_{i}\right\}$
- $U_{i}=0$ is a freezing action; rest are continuation actions
- If control policies are fixed, degenerates to regular MAB
- Otherwise, state evolution are rewards depend on current state and on current control input
- Not a Markov Chain, but a Markov Process
- Scheduling policy γ controls exactly one machine

$$
J^{\gamma}=E^{\gamma}\left(\sum_{t=0}^{\infty} \beta^{t} \sum_{j=1}^{k} R_{j}\left(X_{j}\left(N_{j}(t)\right), U_{j}(t)\right) \quad \mid \quad Z(0)\right)
$$

Superprocesses

- Time evolution of arm is controlled
- More complex than MAB; in general, Gittins Indices not optimal
- Unless each arm (desc. by seq. X states, rewards) has a dominating arm

$$
L(X, \mu)=\max _{\tau>0}\left(\sum_{t=0}^{\tau-1} \beta^{t}[R(X(t))-\mu]\right)
$$

- X dominates Y iff

$$
-L(X, \mu) \geq L(Y, \mu) \quad \forall \mu \in R
$$

- μ is "retirement" value; $L(X, \mu)$ the expected gain over μ

Superprocesses

- If there is dominance, optimal because
- No matter how big the offered retirement is (to quit i), there's always a better arm j
- In practice, this is a quite restrictive assumption

Arm-acquiring bandits

- Regular MAB, but new arms can be created
- Gittins Indices are optimal
- Decisions are not irrevocable
- Decisions based on indices with K_{i} arms consider all of them
- But decisions prior to this did not have all K_{i} arms available;
- no way a prior decision could be "wrong"

Switching penalties

- Regular MAB, but there is a cost c for switching arms
- Gittins Indices are not optimal (example in book)
- If the index is

$$
v_{X_{i}}^{s}\left(x_{j}(0)\right)=\max _{\tau>0} \frac{E\left(\sum_{t=0}^{\tau-1} \beta^{t} R_{j}(t)-c \mid x_{j}(0)\right)}{E\left(\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{j}(0)\right)}
$$

- then only qualitative results are known [11]
- the general nature of the scheduling policies is not known
- solution usually requires full use of DP (backwards induction)

Multiple plays

- Regular k-processes MAB, but is m processors
- At each time allocate each processor to exactly one process
- No process being operated by more than one processor
- Only processes being processed generate reward
- Allocation according to m highest indices: not optimal
- Optimal if indices are sufficiently separated (C1, p.141)
- How to guarantee this beforehand?
- For different criteria (eg: regret minimization) optimal policies are known [7,8]

Restless bandits

- k machines, m processors
- machines' states evolve over time even when not being processed
- reward of non-processed machines might be assumed to be zero
- performance criterion is

$$
J^{\gamma}=E^{\gamma}\left(\sum_{t=0}^{\infty} \beta^{t} \sum_{j=1}^{k} R_{j}\left(X_{j}\left(N_{j}(t)\right), U_{j}(t)\right) \quad \mid \quad Z(0)\right)
$$

- Goal is to find policy that maximizes infinite horizon expected discounted reward

Restless bandits

- In general, Gittins Indices are not optimal
- But for some other optimization criterion, indices are optimal
- eg: infinite horizon average reward-per-time-per-machine criterion

$$
\frac{1}{k}\left(\lim _{T \rightarrow \infty} \frac{1}{T} E\left(\sum_{t=1}^{T} \sum_{i=1}^{k} R_{i}\left(X_{i}(t-1), U_{i}(t)\right)\right)\right)
$$

Restless bandits

- Gittins indices for RB are related to "gift" values given to non-processed machines
- Argument is similar to that of the "retirement" value
- index is a "gift" value that makes us indifferent to running or not the machine
- it is only worth to run the machine if the expected gain is greater than the "gift" value
- this values allow us to index all machines

Example

- find one stationary target hidden in one of k cells
- prior probability of the target in cell i is $p_{i}(0)$
- sensor can look into just one cell at a time
- sensor is imperfect
- P (sensor finds target in $i \mid$ target is in cell $j)=\delta_{i, j} q_{j}$
- where δ is the Kronecker delta function;
- $q_{j}(?)$ is probability of false positive
- reward upon completion is β^{t} (ie, we want to find the target ASAP)
- which sensor to activate at each time?

Example

- let $p_{i}(t)$ be the posterior probability of target being in cell i
- $p_{i}(t)$ is state of cell (arm) i at time t

Example

- For a policy γ, expected reward is

$$
\begin{aligned}
& =\sum_{t=0}^{\infty} \beta^{\tau} P(\text { target is found at } \tau, \text { analyse correct cell }) \\
& =\sum_{t=0}^{\infty} \beta^{\tau} \sum_{i=1}^{k} p_{i}(t) q_{i} P^{\gamma}\left(U(t)=e_{i}\right) \\
& =\sum_{t=0}^{\infty} \beta^{\tau} \sum_{i=1}^{k} R_{i}\left(p_{i}(t), u_{i}(t)\right)
\end{aligned}
$$

- where reward is given for i iff i is activated at $t(U(t)=i)$

Example

- Unfortunately, updates in p_{i} affect all other probabilities (states)
- Thus, not a regular MAB
- Easy to solve if we consider unnormalized probabilities

$$
\begin{array}{rlrl}
p_{i}(t+1) & & \\
& =p_{i}(t) & & \text { if } u_{i}(t)=0 \\
& =p_{i}(t)\left(1-q_{i}\right) & & \text { if } u_{i}(t)=1
\end{array}
$$

Example

- We try to maximize the long-term expected reward
- remember, $R_{i}\left(p_{i}(t), u_{i}(t)\right)=p_{i}(t) q_{i}$ iff $u_{i}(t)=1$, zero otherwise

$$
\sum_{t=0}^{\infty} \beta^{t} \sum_{i=1}^{k} R_{i}\left(p_{i}(t), u_{i}(t)\right)
$$

- Gittins Index of every machine is always achieved at $\tau=1$ (?), so:
- $v_{X_{i}}\left(p_{i}(t)\right)=p_{i}(t) q_{i}$
- which is by the definition of GI, for one-step look-ahead
- β can be ignored from the denominator because it is constant

Example

- If sensor operates in M modes: superprocess
- If there is cost to switch targetting area: MAB w/ switching penalties
- If there are m sensors: MAB w/ multiple plays
- If target is moving: m sensors, restless bandit

Conclusion

- Gittins indices simplify the policy calculation for a class of sequential decision problems
- MAB are very simple problems, but might be extended
- extensions are often related with one another
- arm-acquiring \rightarrow superprocess [240]
- switching costs \rightarrow restless bandits [91]
- Tax problem (minimization of cost of frozen machines) \rightarrow MAB

Thanks

bsilva@cs.umass.edu

