Chapter 5

POMDP APPROXIMATION USING SIMULATION
AND HEURISTICS

Edwin K. P. Chong
Colorado State University

echong@colostate.edu

C. M. Kreucher
General Dynamics Michigan Research and Development Center

Christopher.Kreucher@gd-ais.com

A. O. Hero III

The University of Michigan

hero@umich.edu

1. Introduction

This chapter discusses a class of approximation methods for sensor manage-
ment under the partially observable Markov decision process (POMDP) model.
Unlike Chapter 3, which focuses on analytic methods for bounding and solv-
ing POMDPs, here we discuss methods based on heuristics and simulation.
Our aim is to develop methods that are implementable on-line and find nearly
optimal policies.

While the methods described herein are more generally applicable, the fo-
cus application will be sensor management for target tracking. Information

94 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

theoretic measures discussed in Chapter 4 and particle filter approximations
discussed in Chapter 5 will be implemented to illustrate these approximations.

It is informative to distinguish between myopic and non-myopic (also known
as dynamic or multistage) resource management, a topic of much current inter-
est (see, e.g., [144, 109, 110]). In myopic resource management, the objective
is to optimize performance on a per-decision basis. For example, consider sen-
sor scheduling for tracking a single target, where the problem is to select, at
each decision epoch, a single sensor to activate. An example sensor-scheduling
scheme is CPA (closest point of approach), which selects the sensor that is per-
ceived to be the closest to the target. Another (more sophisticated) example
is the method described in [146], where the authors present a sensor manage-
ment method using alpha-divergence (or Rényi divergence) measures. Their
approach is to make the decision that maximizes the expected information gain
(which is measured in terms of the alpha-divergence).

Myopic sensor-management schemes may not be ideal when the perfor-
mance is measured over a horizon of time. In such situations, we need to
consider schemes that trade off short-term for long-term performance. We call
such schemes non-myopic. Several factors motivate the consideration of non-
myopic schemes:

Heterogeneous sensors. If we have sensors with different locations, charac-
teristics, usage costs, and/or lifetimes, the decision of whether or not to
use a sensor should consider what the overall performance will be, not
whether or not its use maximizes the current performance.

Sensor motion. The future location of a mobile sensor affects how we should
act now. To optimize a long-term performance measure, we need to be
opportunistic in our choice of sensor decisions.

Target motion. If a target is moving, there is potential benefit in sensing the
target before it becomes unresolvable (e.g., too close to other targets or to
clutter, or shadowed by large objects). In some scenarios, we may need
to identify multiple targets before they cross, to aid in data association.

The rest of this chapter is organized as follows. In Section 2, we give a con-
crete motivating example that advocates for the use of non-myopic scheduling.
Next, in Section 3, we review the basic principles behind)-value approxima-
tion. Then, in Section 4, we illustrate the basic lookahead control framework
and describe the constituent components. In Section 6, we describe a host of
()-value approximation methods. Among others, this section includes descrip-
tions of Monte Carlo sampling methods, heuristic approximations, and rollout

POMDP Approzimation Using Simulationand Heuristics 95

methods. In Section 7, we provide a set of simulation results on a model prob-
lem that illustrate several of the approximate non-myopic scheduling methods
described in this chapter. We conclude in Section 8 with some summary re-
marks.

2. Motivating Example

We now present a concrete motivating example that will be used to explain
and justify the heuristics and approximations used in this chapter. This exam-
ple involves a remote sensing application where the goal is to learn the contents
of a surveillance region via repeated interrogation.

Consider a single airborne sensor which is able to image a portion of a
ground surveillance region to determine the presence or absence of moving
ground targets. At each time epoch, the sensor is able to direct an electrically
scanned array so as to interrogate a small area on the ground. Each interroga-
tion yields some (imperfect) information about the small area. The objective is
to choose the sequence of pointing directions that lead to the best acquisition
of information about the surveillance region.

A further complication is the fact that at each time epoch the sensor position
causes portions of the ground to be unobservable due obscuration. Obscuration
is due to varying degrees of terrain elevation that can block line-of-sight from
the sensor to the target on the ground. We assume that given the sensor posi-
tion and the terrain elevation, the sensor can compute a visibility mask which
specifies how well a particular spot on the ground can be seen by the sensor. As
an example, in Figure 6.1 we give binary visibility masks that are computed
from a sensor positioned (a) below and (b) to the left of the topographically
nonhomogeneous surveillance region. As can be seen from the figures, sensor
position causes ‘“shadowing” of certain regions. These regions, if measured,
would provide no information to the sensor.

This example illustrates a situation where non-myopic scheduling is highly
beneficial. Using a known sensor trajectory and known topographical map,
the sensor can predict locations that will be obscured in the future. This in-
formation can be used to prioritize resources so that they are used on targets
that are predicted to become obscured in the future. Extra sensor dwells im-
mediately before obscuration (at the expense of not interrogating other targets)
will sharpen the estimate of target location. This sharpened estimate will allow
better prediction of where and when the target will emerge from the obscured
area. This is illustrated graphically with a six time-step vignette in Figure 6.2.

96 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

£ o
Z S
4 = -

o i ; e

s R

eI A Lo ‘/

3 Ser :‘:- e i

o 3 6 X (km)g = 12 15
(a) The visibility mask for a sensor posi- (b) The visibility mask for a sensor posi-
tioned below the region tioned to the left of the region

Elevation (m)

0 3 12 15

® x (km)

(c) Elevation map of the surveillance region

Figure 5.1. Visibility masks for a sensor positioned below and left of the surveillance region.
We show binary visibility masks (non-visible areas are black and visible areas are white). In
general, visibility may be between 0 and 1 indicating areas of reduced visibility, e.g., regions
that are partially obscured by foliage (Figure 1 from [144] which is (©)2004 IEEE - used with
permission).

3. Basic Principle: Q-value Approximation
3.1 Optimal Policy

In general the action chosen at each time & should be allowed to depend on
the entire history up to time & (i.e., the action at time & is a random variable
that is a function of all observable quantities up to time k). However, it turns
out that if an optimal choice of such a sequence of actions exists, then there is
an optimal choice of actions that depends only on “belief-state feedback.” In
other words, it suffices for the action at time & to depend only on the belief
state (or information state) by at time k. Let BB be the set of distributions over
the underlying state space X (we call B the belief-state space). So what we
seek is, at each time k, a mapping 7} : B — A such that if we perform action

POMDP Approzimation Using Simulationand Heuristics 97

Time =1 Time =2 Time =3

l-l-

x (km) x (km) X (km)

Time =4 Time=5 Time =6

I:P-%
.

=
3
=
3

x(

) x(

) X (km)

Figure 5.2. A six time step vignette where a target moves through an obscured area. Other
targets are present elsewhere in the surveillance region but outside the area shown in the figures.
The target is depicted by an asterisk. Areas that are obscured from the sensor point of view are
black and areas that are visible are white. Extra dwells just before becoming obscured (time =
1) aid in localization after the target emerges (Figure 2 from [144] which is (©2004 IEEE - used
with permission).

aj, = 74 (by), then the resulting objective function is maximized. As usual, we
call such a mapping a policy.

3.2 Q-values

Let V};(bo) be the optimal objective function value (over horizon H). Then,
Bellman’s principle states that

Vii (bo) = max(r(bo, a) + E*[Vi;_y (b1) bo])

where r(bg, a) is the reward associated with taking action a at belief state
bo, and b; is the random next belief state (with distribution depending on a).

98 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT
Moreover,

75 (bo) = arginax(r(bo, a) + E*[Vi_1(b1)|bo)).

Define the ()-value of taking action a at state by, as

Qu—1 (b, a) = (b, a) + E*Vi_j_1 (be11)[be],

where by is the random next belief state. Then, Bellman’s principle can be
rewritten as

7 (b) = argmax Qg (bg, a)

In other words, the optimal action to take at belief-state b, (at time k, with a
horizon-to-go of H — k) is the one with largest ()-value at that belief state. This
principle, called lookahead, forms the heart of approaches to solving POMDPs.

3.3 Stationary policies

In general, an optimal policy is a function of time k. It turns out that if H
is sufficiently large, then the optimal policy is approximately stationary (inde-
pendent of time k). This seems intuitively clear: if the end of the time horizon
is a million years away, then how we should act today given a belief-state x is
the same as how we should act tomorrow given the same belief state. To put it
differently, if H is sufficiently large, the difference between Q) iy and Q71 is
negligible. Henceforth we will assume that there is a stationary optimal policy,
and this is what we seek. We will use the notation 7 for stationary policies
(with no subscript k).

3.4 Receding horizon

Assuming that H is sufficiently large and that we seek a stationary optimal
policy, at any time k we will write:

7" (b) = argmax Qg (b, a).

Notice that the horizon is taken to be fixed at H, regardless of the current time
k. This is justified by our assumption that H is so large that at any time k, the
horizon is still approximately H time steps away. This approach of taking the
horizon to be fixed at H is called receding horizon control. For convenience,
we will also henceforth drop the subscript H from our notation (unless the
subscript is explicitly needed).

POMDP Approzimation Using Simulationand Heuristics 99

Sensing System -
Observables
| e e e o e e el e e e e e e i e 1
1 1
1 o 1
I | Measurement] Action]
Measurements | Fithes selector : Actions
1 Posterior distribution I
: of unobservables 1
_________________________________ 1
Controller

Figure 5.3. Basic lookahead framework.

3.5 Approximating Q-values

Recall that (b, a) is simply the reward r(b, a) of taken action a at belief-
state b, plus the expected cumulative reward of applying the optimal policy for
all future actions. This second term in the ()-value is in general difficult to
obtain, especially for a problem with a large belief-state space. For this reason,
approximation methods are necessary to obtain ()-values. Note that the quality
of an approximation to the (J-value is not so much in the accuracy of the actual
values obtained, but in the ranking of the actions reflected by their relative
values.

In Section 6, we describe a variety of methods to approximate (J)-values.
But before discussing such methods, in the next section we first describe the
basic control framework for using -values to inform control decisions.

4. Basic Control Architecture
5. Control architecture

By Bellman’s principle, knowing the ()-values allows us to make optimal
control decisions. In particular, if we are currently at belief-state b, we need
only find the action a with the largest (b, a). This principle yields a basic
control framework that is illustrated in Figure 6.3.

100 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

The top-most block represents the sensing system, which we treat as having
an input and two forms of output. The input represents actions (external con-
trol commands) we can apply to control the sensing system. Actions usually
include sensor-resource controls, such as which sensor(s) to activate, at what
power level, where to point them, what waveforms to use, and what sensing
modes to activate. Actions may also include communication-resource controls,
such as the data rate for transmission from each sensor.

The two forms of outputs from the sensing system represent:

1 Fully observable aspects of the internal state of the sensing system (which
we call observables), and

2 Measurements (observations) of those aspects of the internal state that
are not directly observable (which we refer to simply as measurements).

We assume that the underlying state-space is the Cartesian product of two sets,
one representing unobservables and the other representing observables. Target
states are prime examples of unobservables. So, measurements are typically
the outputs of sensors, representing observations of target states. Observables
include things like sensor locations and orientations, which sensors are acti-
vated, battery status readings, etc. In the remainder of this section, we describe
the components of our control framework. Our description starts from the ar-
chitecture of Figure 6.3 and progressively fills in the details.

5.1 Controller

At each decision epoch, the controller takes the outputs (measurements and
observables) from the tracking system and, in return, generates an action that is
fed back to the tracking system. This basic closed-loop architecture is familiar
to mainstream control system design approaches.

The controller consists of two main components. The first component is the
measurement filter, which takes as its input the measurements, and provides as
its output the posterior distribution of the unobservable internal states (which
we henceforth simply call unobservables). In the typical situation where these
unobservables are target states, the measurement filter outputs posterior distri-
bution of the target states given the measurement history. We describe the mea-
surement filter further below. The posterior distribution of the unobservables,
together with the observables, form the belief state, the posterior distribution
of the underlying state.

POMDP Approzimation Using Simulationand Heuristics 101

The second component of the controller is the action selector, Action se-
lectorwhich takes the belief state and computes an action (which is the output
of the controller). The basis for action selection is Bellman’s principle, using
(Q-values. We discuss this below.

5.2 Measurement filter

The measurement filter computes the posterior distribution given measure-
ments. This component is present in virtually any target-tracking system. It
turns out that the posterior distribution can be computed iteratively: each time
we obtain a new measurement, the posterior distribution can be obtained by up-
dating the previous posterior distribution based on knowing the current action,
the transition law, and the observation law. This update is based on Bayes’ rule
(see Chapter 3).

The measurement filter can be constructed in a number of ways. If we know
beforehand that the posterior distribution always resides within a family of
distributions that is conveniently parameterized, then all we need to do is keep
track of the belief-state parameters. This is the case, for example, if the belief
state is Gaussian. Indeed, if the unobservables evolve in a linear fashion, then
these Gaussian parameters can be updated using a Kalman filter. See Chapter
11 for a detailed development of the Kalman filter for multiple target tracking
with data association. In general, however, it is not practical to keep track of
the exact belief state. A variety of options have been explored for belief-state
representation and simplification (e.g., [208, 204, 256]). We will have more to
say about belief-state simplification in Section 6.10.

Particle filtering is a Monte Carlo sampling method for updating posterior
distributions. Instead of maintaining the exact posterior distribution, we main-
tain a set of representative samples from that distribution. It turns out that
this method dovetails naturally with Monte Carlo sampling-based methods for
(Q-value approximation, as we will describe later in Section 6.7.

5.3 Action selector

As shown in Figure 6.4, the action selector consists of a search (optimiza-
tion) algorithm that optimizes an objective function, the @-function, with re-
spect to an action. In other words, the ()-function is a function of the action—it
maps each action, at a given belief state, to its ()-value. The action that we seek
is one that maximizes the (-function. So, we can think of the ()-function as a
kind of “action-utility” function that we wish to maximize.

102 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

Observables

Candidate :

action :

Measurement . Q-Value Search 1
Filter] Approximator »| Algorithm :
Paosterior distribution : Q-Value :

of unobservables

Action Selector

Figure 5.4. Basic components of the action selector.

As is typical, the search algorithm iteratively generates a candidate action
and evaluates the (Q-function at this action (this numerical quantity is the -
value), searching over the space of candidate actions for one with the largest
Q-value. Methods for obtaining (approximating) the ()-values is described in
the next section.

6. Q-value Approximation Methods
6.1 Basic approach

Recall the definition of the ()-value,
Q(b,a) = r(b,a) + E*[V*(¥)[b], 5.1

where ' is the random next belief state (with distribution depending on a). In
all but very special problems, it is impossible to compute the ()-value exactly.
In this section, we describe a variety of methods to approximate the ()-value.
Because the first term on the right-hand side of (6.1) is usually easy to compute,
most approximation methods focus on approximating the second term. As
pointed out before, it is important to realize that the quality of an approximation
to the ()-value is not so much in the accuracy of the actual values obtained, but
in the ranking of the actions reflected by their relative values.

6.2 Monte Carlo sampling

In general, we can think of Monte Carlo methods simply as the use of com-
puter generated random numbers in computing expectations of random vari-
ables through averaging over many samples. With this in mind, it seems natural
to consider using Monte Carlo methods to compute the value function directly

POMDP Approzimation Using Simulationand Heuristics 103

based on Bellman’s equation:
Vir(bo) = max(r(bo, ao) + E*[Vyz_y (b1)[bo])-

Notice that the second term on the right-hand side involves expectations (one
per action candidate ag), which can be computed using Monte Carlo sampling.
However, the random variable inside each expectation is itself an objective
function value (with horizon H — 1), and so it too involves a max of an expec-
tation via Bellman’s equation:

bo] > |

Notice that we now have two “layers” of max and expectation, one “nested”
within the other. Again, we see that the inside expectation involves the value
function (with horizon H — 2), which yet again can be written as a max of
expectations. Proceeding this way, we can write V;(bg) in terms of H layers of
max and expectations. Each expectation that appears in this way of expressing
the value function V}; can be computed using Monte Carlo sampling. The
question that remains is, how computationally burdensome is this task?

Vi (bo) = max <r(b0, ag) + E* [max(r(bl, ay) + EY Vi _o(b2)|b1])
aop ai

Kearns, Mansour, and Ng [134] have provided a method to calculate the
computational burden of approximating the value function using Monte Carlo
sampling as described above, given some prescribed accuracy in the approx-
imation of the value function. Unfortunately, it turns out that for practical
POMDP problems this computational burden is prohibitive, even for modest
degrees of accuracy. So, while Bellman’s equation suggests a natural Monte
Carlo method for approximating the value function, the method is not useful
in practice. For this reason, we seek alternative approximation methods. In the
next few subsections, we explore some of these methods.

6.3 Relaxation of optimization problem

Some problems that are difficult to solve become drastically easier if we re-
lax certain aspects of the problem. For example, by removing a constraint in
the problem, the “relaxed” problem may yield to well-known solution meth-
ods. This constraint relaxation enlarges the constraint set, and so the solution
obtained may no longer be feasible in the original problem. However, the ob-
jective function value of the solution bounds the optimal objective function
value of the original problem.

The Q-value involves the quantity V*(b'), which can be viewed as the op-
timal objective function value corresponding to some optimization problem.
The method of relaxation, if applicable, gives rise to a bound on V*(b"), which

104 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

then provides an approximation to the)-value. For example, a relaxation of
the original POMDP may result in a bandit problem (see Chapter 7), or may
be solvable via linear programming (see Chapter 3). For further discussion on
methods based on relaxation, see Chapter 8.

6.4 Heuristic approximation

In some applications, although we are unable to compute ()-values directly,
we can use domain knowledge to develop some idea of how it behaves. If so,
we can heuristically construct a -function based on this knowledge.

Recall from (6.1) that the (J-value is the sum of two terms, where the first
term (the immediate reward) is usually easy to compute. Therefore, it often
suffices to approximate only the second term in (6.1), which is the mean opti-
mal objective function value starting at the next belief state, which we call the
expected value-to-go (EVTG). (Note that the EVTG is a function of both b and
a, because the distribution of the next belief state is a function of b and a.) In
some problems, it is possible to construct a heuristic EVTG based on domain
knowledge. If the constructed EVTG properly reflects tradeoffs in the selec-
tion of alternative actions, then the ranking of these actions via their ()-values
will result in the desired “lookahead.”

For example, consider the motivating example of tracking multiple targets
with a single sensor. Suppose we can only measure the location of one target
per decision epoch. The problem then is to decide which location to measure
and the objective function is the aggregate (multi-target) tracking error. The
terrain over which the targets are moving is such that the measurement errors
are highly location dependent, for example because of the presence of topo-
graphical features which cause some areas to be invisible from a future sensor
position. In this setting, it is intuitively clear that if we can predict sensor and
target motion so that we expect a target is about to be obscured, then we should
focus our measurements on that target immediately before the obscuration so
that its track accuracy is improved and the overall tracking performance maxi-
mized in light of the impending obscuration.

The same reasoning applies in a variety of other situations, including those
where targets are predicted to become unresolvable to the sensor (e.g., two
targets that cross) or where the target and sensor motion is such that future
measurements are predicted to be less reliable (e.g., a bearings-only sensor
that is moving away from a target). In these situations, we advocate a heuris-
tic method that replaces the EVTG by a function that captures the long-term
benefit of an action in terms of an “opportunity cost” or “regret.” That is, we

POMDP Approzimation Using Simulationand Heuristics 105

approximate the ()-value as
Q(b,a) = r(b,a) + wN(b,a), (5.2)

where N (b, a) is an easily computed heuristic approximation of the long-term
value, and w is a weighting term that allows us to trade the influence of the
immediate value and the long-term value. As a concrete example of a use-
ful heuristic, we have used the “gain in information for waiting” as a choice
of N(b,a) [145]. Specifically, let g§ denote the expected myopic gain when
taking action a at time k. Furthermore, denote by p¥(-) the distribution of my-
opic gains when taking action a at time k. Then a useful approximation of the
long-term value of taking action a is the gain (loss) in information received by
waiting until a future time step to take the action,

M
N(b,a) ~ Y y"sgn(gk — gFt™) Do (pEO)lIPET™ () (5.3)
m=1

where M is the number of time steps in the future that are considered.

Each term in the summand of N (b, a) is made up of two components. First,
sgn (§§ — g’;+m) signifies if the expected reward for taking action a in the fu-
ture is more or less than the present. A negative value implies that the future is
better and that the action ought to be discouraged at present. A positive value
implies that the future is worse and that the action ought to be encouraged at
present. This may happen, for example, when the visibility of a given target
is getting worse with time. The second term, Do, (p%(-)|[phT™(-)), reflects the
magnitude of the change in reward using the divergence between the density on
myopic rewards at the current time step and at a future time step. A small num-
ber implies that the present and future rewards are very similar, and therefore

the non-myopic term will have little impact on the decision making.

Therefore, N (b, a) is positive if an action is less favorable in the future (e.g.,
the target is about to become obscured). This encourages taking actions that
are beneficial in the long term, and not just taking actions based on their im-
mediate reward. Likewise, the term is negative if the action is more favorable
in the future (e.g., the target is about to emerge from an obscuration). This
discourages taking actions now that will have more value in the future.

6.5 Parametric approximation

In situations where a heuristic Q-function is difficult to construct, we may
consider methods where the ()-function is approximated by a parametric func-
tion (by this we mean that we have a function approximator parameterized by

106 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

one or more parameters). Let us denote this approximation by Q(b, 6), where
0 is a parameter (to be tuned appropriately). For this approach to be useful, the
computation of Q(b, 6) has to be relatively simple, given b and 6. Typically,
we seek approximations for which it is easy to set the value of the parameter
0 appropriately, given some information of how the (-values “should” behave
(e.g., from expert knowledge, empirical results, simulation, or on-line obser-
vation). This adjustment or tuning of the parameter 6 is called training.

As in the heuristic approximation approach, the approximation of the -
function by the parametric function approximator is usually accomplished by
approximating the EVTG, or even directly approximating the objective func-
tion V*.! In the usual parametric approximation approach, the belief state b is
first mapped to a set of features. The features are then passed through a para-
metric function to approximate V*(b). For example, in the problem of tracking
multiple targets with a single sensor, we may extract from the belief state some
information on the location of each target relative to the sensor, taking into ac-
count the topography. These constitute the features. For each target, we then
assign a numerical value to these features, reflecting the measurement accu-
racy. Finally, we take a linear combination of these numerical values, where
the coefficients of this linear combination serve the role of the parameters to
be tuned.

The parametric approximation method has some advantages over methods
based only on heuristic construction. First, the training process usually in-
volves numerical optimization algorithms, and thus well-established method-
ology can be brought to bear on the problem. Second, even if we lack imme-
diate expert knowledge on our problem, we may be able to experiment with
the system (e.g., by using a simulation model, e.g., a generative model [134]).
Such empirical output is useful for training the function approximator. Com-
mon training methods found in the literature go by the names of reinforcement
learning, (-learning, neurodynamic programming, and approximate dynamic
programming.

The parametric approximation approach may be viewed as a systematic
method to implement the heuristic-approximation approach. But note that even
in the parametric approach, some heuristics are still needed in the choice of
features and in the form of the function approximator. For further reading, see
[29].

'In fact, given a POMDP, it turns out that the QQ-value can be viewed as the objective function value for a
related problem; see [29].

POMDP Approzimation Using Simulationand Heuristics 107
6.6 Action-sequence approximations

Let us write the value function (optimal objective function value as a func-
H
V*(b) = max BT | > r(by, w(by))
k=1

tion of belief state) as
b]
H

max Zr(bk,ak)

a1,...,ap:ap=m(by) 1

=

b] , (5.4)

where the notation max,, . q,.q,=r(p,) Means maximization subject to the
constraint that each action a;, is a (fixed) function of the belief state b;. If
we relax this constraint on the actions and allow them to be arbitrary random
variables, then we have an upper bound on the value function:

b].

In some applications, this upper bound provides a suitable approximation to the
value function. The advantage of this approximation method is that in certain
situations the computation of the “max” above involves solving a relatively
easy optimization problem. This method is called hindsight optimization [66,
254].

Vupper(b) =E

aly...

H
max Zr(bk,ak)
am
k=1

One implementation of this idea involves averaging over many Monte Carlo
simulation runs to compute the expectation above. In this case, the “max”
is computed for each simulation run by first generating all the random num-
bers for that run, and then applying a static optimization algorithm to compute
optimal actions ay,...,ap. Itis easy now to see why we call the method
“hindsight” optimization: the optimization of the action sequence is done after
knowing all uncertainties over time, as if making decisions in hindsight.

As an alternative to relaxing the constraint in (6.4) (that each action ay is a
fixed function of the belief state by), suppose we further restrict each action to
be simply fixed (not random). This restriction gives rise to a lower bound on
the value function:

‘A/iower(b) = max [E*%H [T(bla al) et T(bH7 aH)‘b]
at,...,.aH
To use analogous terminology to “hindsight optimization,” we may call this
method foresight optimization—we make decisions before seeing what actu-
ally happens, based on our expectation of what will happen. For an application
of this method to tracking, see [65].

108 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

6.7 Rollout

In this section, we describe the method of policy rollout (or simply rollout).
The basic idea is simple. First let V7 (bg) be the objective function value cor-
responding to policy 7. Recall that V* = max, V™. In the method of rollout,
we assume that we have a candidate policy m,.5c (called the base policy), and
we simply replace V* in (6.1) by V' ™base, In other words, we use the following
approximation to the ()-value:

Q™ (b,a) = r(b,a) + E*[Vase (5')|b].

We can think of VV™=se as the performance of applying policy Thage in our
system. In many situations of interest, V' ™base ig relatively easy to compute,
either analytically, numerically, or via Monte Carlo simulation.

It turns out that the policy 7 defined by

m(b) = argmax Q™ (b, a) (5.5)

a

is at least as good as Tpage (in terms of the objective function); in other words,
this step of using one policy to define another policy has the property of policy
improvement. This policy-improvement result is the basis for a method known
as policy iteration, where we iteratively apply the above policy-improvement
step to generate a sequence of policies converging to the optimal policy. How-
ever, policy iteration is difficult to apply in problems with large belief-state
spaces, because the approach entails explicitly representing a policy and iter-
ating on it (remember that a policy is a mapping with the belief-state space B
as its domain).

In the method of policy rollout, we do not explicitly construct the policy
7 in (6.5). Instead, at each time step, we use (6.5) to compute the output of
the policy at the current belief-state. For example, the term [V ™base (3)|]
can be computed using Monte Carlo sampling. To see how this is done, ob-
serve that 1/ ™ase (b') is simply the mean cumulative reward of applying policy
Thase, @ quantity that can be obtained by Monte Carlo simulation. The term
e[V ™ease (') |b] is the mean with respect to the random next belief-state b’
(with distribution that depends on b and a), again obtainable via Monte Carlo
simulation. We provide more details in Section 6.9. In our subsequent dis-
cussion of rollout, we will assume by default that the method is implemented
using Monte Carlo simulation. For an application of the rollout method to
sensor scheduling in target tracking, see [109, 110].

POMDP Approzimation Using Simulationand Heuristics 109

6.8 Parallel rollout

An immediate extension to the method of rollout is to use multiple base
policies. So suppose that ITg = {r!,... 7"} is a set of base policies. Then
replace V* in (6.1) by

V(b) = max V7™ (b).
We call this method parallel rollout [62]. Notice that the larger the set 11z,
the tighter V'(b) becomes as a bound on V*(b). Of course, if IIp contains the
optimal policy, then V = V*. It follows from our discussion of rollout that
the policy improvement property also holds when using a lookahead policy
based on parallel rollout. As with the rollout method, parallel rollout can be
implemented using Monte Carlo sampling.

6.9 Control architecture in the Monte Carlo case

The method of rollout provides a convenient turnkey (systematic) proce-
dure for Monte-Carlo-based decision making and control. Here, we specialize
the general control architecture of Section 4 to the use of particle filtering for
belief-state updating and a Monte Carlo method for ()-value approximation
(e.g., rollout). Particle filtering, which, as discussed in Chapter 5, is a Monte
Carlo sampling method for updating posterior distributions, dovetails naturally
with Monte Carlo methods for (J-value approximation. An advantage of the
Monte Carlo approach is that it does not rely on analytical tractability—it is
straightforward in this approach to incorporate sophisticated models for sensor
characteristics and target dynamics.

Figure 6.5 shows the control architecture specialized to the Monte Carlo set-
ting. Notice that, in contrast to Figure 6.3, the a particle filter plays the role of
the measurement filter, and its output consists of samples of the unobservables.
Figure 6.6 shows the action selector in this setting. Contrasting this figure with
Figure 6.4, we see that a Monte Carlo simulator plays the role of the ()-value
approximator (e.g., through the use of rollout).

As a specific example, consider applying the method of rollout. In this case,
the evaluation of the)-value for any given candidate action relies on a simula-
tion model of the sensing system operating some base policy. This simulation
model is a “dynamic” model in the sense that it evaluates the behavior of the
sensing system over some horizon of time (which is specified beforehand).
The simulator requires as inputs the current observables together with samples
of unobservables from the particle filter (to specify initial conditions) and a
candidate action. The output of the simulator is a)-value corresponding to

110 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

Sensing System -

Observables

| peisdessdisdedesdioins s tataisiaictstslsisi sl sistelos s splatta) I

1 I

1 1

Particle Action !
Measurements EAREE | T | Actions

1 Samples of |

: unobservables :

Controller

Figure 5.5. Basic control architecture with particle filtering and rollout.
Observables | o o o L __
Candidate |
action :
Particle 4 — - Search I
Filter L »| Algorithm | !
Samples of | Q-Value :
Unobservablest = mmmmmmm i e -

Action Selector

Figure 5.6. Components of the action selector.

POMDP Approzimation Using Simulationand Heuristics 111

the current measurements and observables, for the given candidate action. The
output of the simulator represents the mean performance of applying the base
policy, depending on the nature of the objective function. For example, the
performance measure of the system may be the negative mean of the sum of
the cumulative tracking error and the sensor usage cost over a horizon of H
time steps, given the current system state and candidate action.

To elaborate on exactly how the)-value approximation using rollout is im-
plemented, suppose we are given the current observables and a set of samples
of the unobservables (from the particle filter). The current observables together
with a single sample of unobservables represent a candidate current underly-
ing state of the sensing system. Starting from this candidate current state, we
simulate the application of the given candidate action (which then leads to a
random next state), followed by application of the base policy for the remain-
der of the time horizon—during this time horizon, the system state evolves
according to the dynamics of the sensing system as encoded within the simu-
lation model. For this single simulation run, we compute the “action utility”
of the system (e.g., the negative of the sum of the cumulative tracking error
and sensor usage cost over that simulation run). We do this for each sample of
the unobservables, and then average over the performance values from these
multiple simulation runs. This average is what we output as the ()-value.

The samples of the unobservables from the particle filter that are fed to
the simulator (as candidate initial conditions for unobservables) may include
all the particles in the particle filter (so that there is one simulation run per
particle), or may constitute only a subset of the particles. In principle, we may
even run multiple simulation runs per particle.

The above Monte Carlo method for approximating POMDP solutions has
some beneficial features. First, it is flexible in that a variety of sensor manage-
ment scenarios can be tackled using the same framework. This is important
because of the wide variety of sensors that may be encountered in practice.
Second, the method does not require analytical tractability; in principle, it is
sufficient to simulate a system component, whether or not its characteristics are
amenable to analysis. Third, the framework is modular in the sense that mod-
els of individual system components (e.g., sensor types, target motion) may be
treated as “plug-in” modules. Fourth, the approach integrates naturally with
existing simulators (e.g., Umbra [100]). Finally, the approach is inherently
non-myopic, allowing the trade-off of short-term gains for long-term rewards.

112 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT
6.10 Belief-state simplification

If we apply the method of rollout to a POMDP, we need a base policy that
maps belief states to actions. Moreover, we need to simulate the performance
of this policy—in particular, we have to sample future belief states as the sys-
tem evolves in response to actions resulting from this policy. Because belief
states are probability distributions, keeping track of them in a simulation is
burdensome.

A variety of methods are available to approximate the belief state. For ex-
ample, we could simulate a particle filter to approximate the evolution of the
belief state (as described in Chapter 5), but even this may be unduly burden-
some. As a further simplification, as in Chapter 11 we could use a Gaussian
approximation and keep track only of the mean and covariance of the belief
state using a Kalman filter or any of its extensions, including extended Kalman
filters and unscented Kalman filters [125]. Naturally, we would expect that the
more accurate the approximation of the belief state, the more burdensome the
computation.

An extreme special case of the above tradeoff is to use a delta distribution for
belief states in our simulation of the future. In other words, in our lookahead
simulation, we do away with keeping track of belief states altogether and in-
stead simulate only a completely observable version of the system. In this case,
we need only consider a base policy that maps underlying states to actions—we
could simply apply rollout to this policy, and not have to maintain any belief
states in our simulation. Call this method completely observable (CO) rollout.
It turns out that in certain applications, such as in sensor scheduling for target
tracking, a CO-rollout base policy is naturally available (see [109, 110]). Note
that we will still need to keep track of (or estimate) the actual belief state of the
system, even if we use CO rollout. The benefit of CO rollout is that it allows
us to avoid keeping track of (simulated) belief states in our simulation of the
future evolution of the system.

In designing lookahead methods with a simplified belief state, we must en-
sure that the simplification does not hide the good or bad effects of actions. In
other words, we need to make sure that the resulting (Q-value approximation
properly ranks current actions. This requires a carefully designed simplifica-
tion of the belief state together with a base policy that appropriately reflects the
effects of taking specific current actions.

For example, suppose that a particular current action results in poor future
rewards because it leads to belief states with large variances. Then, if we use
the method of CO rollout, we have to be careful to ensure that this detrimental
effect of the particular current action be reflected as a cost in the lookahead.

POMDP Approzimation Using Simulationand Heuristics 113

(Otherwise, the effect would not be accounted for properly, because in CO
rollout we do not keep track of belief states in our simulation of the future
effect of current actions.)

Another caveat in the use of simplified belief states in our lookahead is
that the resulting rewards in the lookahead may also be affected (and this may
have to be taken into account). For example, consider again the problem of
sensor scheduling for target tracking, where the per-step reward is the negative
mean of the sum of the tracking error and the sensor usage cost. Suppose
that we use a particle filter for tracking (i.e., for keeping track of the actual
belief state). However, for our lookahead, we use a Kalman filter to keep track
of future belief states in our rollout simulation. In general, the tracking error
associated with the Kalman filter is different from that of the particle filter.
Therefore, when summed with the sensor usage cost, the relative contribution
of the tracking error to the overall reward will be different for the Kalman
filter compared to the particle filter. To account for this, we will need to scale
the tracking error (or sensor usage cost) in our simulation so that the effect of
current actions are properly reflected in the ()-value approximations from the
rollout with the simplified belief state calculation.

6.11 Reward surrogation

In applying a POMDP approximation method, it is often useful to substi-
tute the reward function for an alternative (surrogate), for a number of reasons.
First, we may have a surrogate reward that is much simpler (or more reliable)
to calculate than the actual reward (see, e.g., the method of reduction to clas-
sification in Section 4 of Chapter 4). Second, it may be desirable to have a
single surrogate reward for a range of different actual rewards. For example,
information gain is often useful as a surrogate reward in sensing applications,
taking the place of a variety of detection and tracking metrics (see Chapter 4).
Third, reward surrogation may be necessitated by the use of a belief-state sim-
plification technique. For example, if we use a Kalman filter to update the
mean and covariance of the belief state, then the reward can only be calculated
using these entities (see Chapter 11).

The use of a surrogate reward can lead to many benefits. But some care
must be taken in the design of a suitable surrogate reward. Most important is
that the surrogate reward be sufficiently reflective of the true reward that the
ranking of actions with respect to the approximate (J-values be preserved. A
superficially benign substitution may in fact have unanticipated but significant
impact on the ranking of actions. For example, recall the example raised in the
previous section on belief-state simplification, where we substitute the tracking

114 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

error of a particle filter for the tracking error of a Kalman filter. Superficially,
this substitute appears to be hardly a “surrogate” at all. However, as pointed
out before, the tracking error of the Kalman filter may be significantly different
in magnitude from that of a particle filter.

7. Simulation Result

In this section, we illustrate the performance of several of the strategies
discussed in this chapter on a common model problem. The model problem
has been chosen to have the characteristics of the motivating example given
earlier, while remaining simple enough so that the workings of each method
are transparent.

In the model problem, there are two targets, each of which is described by
a one-dimensional position x. The sensor may measure any one of the 16
cells, which span the possible target locations (see Figure 6.7). The sensor
makes three (not necessarily distinct) measurements per time step, receiving
binary returns independent from dwell to dwell. In occupied cells, a detection
is received with probability P, (set here at 0.9). In cells that are unoccupied
a detection is received with probability Py (set here at 0.01). At the onset,
positions of the targets are known only probabilistically. The belief state for
the first target is uniform across sensor cells {2 - - - 6} and for the second target
is uniform across sensor cells {11 --- 15}.

The visibility of the cells changes with time to emulate the motivating ex-
ample. At time 1, all cells are visible to the sensor. At times 2, 3, and 4, cells
{11---15} become obscured. Attime 5, all cells are visible again. This model
problem reflects the situation where a target is initially visible to the sensor,
becomes obscured, and then reemerges from the obscuration.

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 89 | 9-10 [10-11]11-12| 12-13| 13-14 | 14-15] 15-16
Cell 1| Cell2]| Cell3| Cell 4| Cell 5| Cell 6| Cell 7| Cell 8 | Cell 9 [Cell 10|Cell 11]|Cell 12|Cell 13|Cell 14[Cell 15|Cell 16
Time 1 X X
Time 2
Time 3
Time 4]
Time 5 M M

Figure 5.7. The model problem. At the onset, the belief state for target 1 is uniformly distrib-
uted across cells {2 -6} and the belief state for target 2 is uniformly distributed across cells
{11---15}. At time 1 all cells are visible. At times 2, 3, and 4, cells {11 - - - 15} are obscured.
This emulates the situation where one target is initially visible to the sensor, becomes obscured,
and then reemerges (Figure 4 from [144] which is (©2004 IEEE - used with permission).

POMDP Approzimation Using Simulationand Heuristics 115

At time 1 a myopic strategy, having no information about the future visibil-
ity, will choose to measure cells uniformly from the set {2---6} U{11--- 15}
as they all have the same expected immediate reward. As a result, target 1 and
target 2 will on the average be given equal attention. A non-myopic strategy,
on the other hand, will choose to measure cells from {11---15} as they are
soon to become obscured. That is, the policy of looking for target 2 at time 1
followed by looking for target 1 is best.

Figure 6.8 shows the performance of several of the on-line strategies dis-
cussed in this chapter on this common model problem. The performance of
each scheduling strategy is measured in terms of the mean squared tracking
error at each time step. The curves represent averages over 10, 000 realizations
of the model problem. Each realization has randomly chosen initial positions
of the targets and measurements corrupted by random mistakes as discussed
above.

The performance of five different policies is given in Figure 6.8. These
policies are described as follows.

= A random policy that simply chooses one of the 16 cells randomly for
interrogation. This policy provides a worst-case performance and will
bound the performance of the other policies.

= A myopic policy that takes the action expected to maximize immediate
reward. Here the surrogate reward is information gain (see Chapter 4),
so the value of an action is estimated by the amount of information it
gains. The myopic policy is sub-optimal because it does not consider
the long term ramifications of its choices. In particular, at time 1 the
myopic strategy has no preference as to which target to measure because
both are unobscured and have uncertain position. Therefore, half of the
time, target 1 is measured, resulting in an opportunity cost because target
2 is about to disappear.

m The heuristic EVTG approximation described in Section 6.4. This
policy gives weight to actions expected to be more valuable now than in
the future. In particular, actions that correspond to measuring target 2
are given additional value because target 2 is predicted to be obscured
in the future. This causes the relative ranking of actions correspond-
ing to measuring target 2 higher than those corresponding to measuring
target 1. For this reason, this policy (like the other non-myopic approx-
imations described next) significantly outperforms the myopic strategy.
This method has computational burden on the order of 7' times that of
the myopic policy, where 7' is the horizon length.

116 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

m The rollout policy described in Section 6.7. The base policy used here
is to point the sensor where the target is expected to be. This expectation
is computed using the predicted future belief state, which requires the
posterior (belief state) to be propagated in time. This is done using a
particle filter to represent the posterior. We again use information gain
as the surrogate metric to evaluate policies. The computational burden
of this method is on the order of NIT' times that of the myopic policy,
where 7' is the horizon length and NN is the number of Monte Carlo trials
used in the approximation (here N = 25).

m The completely observable rollout policy described in Section 6.10.
The base policy here is also to point the sensor where the target is ex-
pected to be, but is modified to enforce the criterion that the sensor
should alternate looking at the two targets. This slight policy modifi-
cation is necessary due to the delta-function representation of the future
belief state. Since the completely observable policy does not require pre-
dicting the posterior into the future, it is significantly faster than standard
rollout (it is an order of magnitude faster in these simulations). However,
completely observable rollout requires a different surrogate reward (one
that does not require the posterior like the information gain surrogate
metric does). Here we have chosen as a surrogate reward to count the
number of detections received, discounting multiple detections of the
same target.

8. Summary and Discussion

This chapter has presented approximation methods based on heuristics and
simulation for partially observable Markov Decision Processes. We have high-
lighted via simulation on a simple model problem approaches based on rollout
and a particular heuristic based on information gain. We have detailed some
of the design choices that go into finding appropriate approximation, including
choice of surrogate reward and belief-state representation.

Throughout this chapter we have taken special care to emphasize the limita-
tions of the methods. Broadly speaking, all tractable methods require domain
knowledge in the design process. Rollout methods require a base policy spe-
cially designed for the problem at hand; relaxation methods require one to
identify the proper constraint(s) to remove; heuristic approximations require
one to identify an appropriate approximation to the value-to-go function, and
so on. That being said, when such domain knowledge is available it can often
result in dramatic improvements in system performance over more traditional
methods at a fixed computational cost.

POMDP Approzimation Using Simulationand Heuristics 117

4r = =+ Random Policy
----- Myopic Policy
— Rollout
358a L —— Completely Observable Rollout
RS == Heruistic EVTG Approximation

Tracking Error

1 2 3 4 5
Time

Figure 5.8. The performance of the five policies discussed above. Performance is measured
in terms of mean squared tracking error at each time step, averaged over a large number of
Monte Carlo trials.

The next two chapters describe the multi-armed bandit (MAB) framework
for sensor management. The MAB model can be viewed as a relaxation of
the general POMDP model that was the focus of the approximations in this
chapter. Multi-target tracking applications will be revisited in Chapters 8 and
11.

