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1. Introduction

In this chapter we review the Joint Multitarget Probability Density (JMPD)
for target tracking and sensor management applications and show how it can

be evaluated using particle filtering methods. The JMPD is the belief state, i.e.
the posterior density, for multiple targets. Specifically, it specifies the proba-
bility that: 1) there are T targets present, T = 1, . . . ,∞; and 2) given T , the
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targets are in states x1, . . . xT . Because it captures the probability distribution
across target number, target state and target type, the JMPD serves as the es-
sential starting point for any multiple target tracking and sensor management
task. Indeed, as discussed in Chapter 3 and Chapter 4, respectively, the JMPD
specifies the crucial information required for implementation of POMDP or
information theoretic sensor management algorithms.

Consider an Intelligence, Surveillance and Reconnaissance (ISR) system
tasked with detecting, tracking and identifying all ground vehicles within a
100 square kilometer region. The system consists of one or more Ground
Moving Target Indicator (GMTI) radars deployed on a set of airborne, near-
space or space platforms. The system has agile radar beams that can be se-
lectively pointed and operated in a number of different resolution modes. The
sensor manager must automatically determine the best beam pointing direc-
tions and resolution modes. When the system is first deployed there is great
uncertainty about how many targets are present as well as their locations and
identities, so it operates in a low-resolution wide-area search mode. This wide-
area search mode produces a number of tentative detections which are revisited
using a higher resolution mode that has improved signal-to-noise+clutter ratio
(SNCR). This reduces the uncertainty regarding the number of targets but the
system still has great uncertainty regarding their locations and identities. Once
targets are detected, they will be tracked and localized. Then the sensors will
be tasked to produce high range resolution profiles or inverse synthetic aper-
ture radar (ISAR) images that are used for automatic target identification. The
JMPD captures the uncertainties of target positions and number of targets given
past measurements.

At each stage in this process the sensor manager deploys the sensors so as
to minimize the uncertainty regarding the targets in the scene. It may appear
that this problem can be neatly solved by moving through a sequence of oper-
ations: detect, localize, track, identify. However, in reality one has a complex
task mixture. Some tracking operations may also provide detection informa-
tion on new targets; identification tasks include localization information and
so on. Additionally, the system must constantly search for new targets that
may have entered the scene. This requires a single entity that captures the in-
formation quality for all aspects of the problem: this is the role of the joint
multi-target probability density. If we can develop numerically tractable meth-
ods to evaluate this JMPD, then its information content can be evaluated using
methods developed in Chapter 4 and we can predict how the JMPD informa-
tion content will change on average for a wide set of alternative sensing actions
(alternative modes, beam pointing angles and so on). The optimal sensor man-
ager is then the one that produces the largest expected increase in information
for each action.
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There are two features of the JMPD belief state approximation developed
in this Chapter that should be emphasized: 1) the permutation symmetry of
the JMPD has significant impact on algorithm design; and 2) the ability of
the JMPD to perform multi-target tracking without the need for data associa-
tion. To see why we require that the JMPD be symmetric under permutation
of target indices, consider the scenario that a jeep is near hill A and a tank
is near hill B. When we construct a probability density to describe this situ-
ation, the ordering of the arguments in the density cannot effect its value. If
x1 = {jeep, x1} and x2 = {tank, x2}, where the xi are position and velocity
states of the two objects, then we require that the probability density satisfy
p(x1,x2) = p(x2,x1). Proper treatment of the this permutation symmetry has
a significant impact on the development of efficient particle sampling methods
for the JMPD.

Most target tracking solutions developed from about 1960 to the mid-1990’s
relied heavily on the use of the Kalman filter, linear Gaussian state dynamics,
linear Gaussian measurements, and data association methods for assigning dif-
ferent measurements to different tracks. Recent progress on this approach is
described in Chapter 11. Unlike methods depending on Kalman filtering and
data association, developed in Chapter 11, the particle filtering approximation
to the JMPD belief state described in this Chapter is a fully Bayesian approach
that can handle non-Gaussian state or measurements and multiple targets-per-
measurement without using data association heuristics.

Until recently, the literature in multi-target tracking was focussed on Kalman
filtering-based techniques such as multiple hypothesis tracking (MHT) and
joint probabilistic data association (JPDA) [33, 13, 14], discussed in Chap-
ter 11. The fully Bayesian perspective on multiple target tracking adopted in
this Chapter is more recent. Stone [223] developed a mathematical theory of
multiple target tracking from a Bayesian point of view and Srivistava, Miller
[176], and Kastella [130] did early work in this area. The issue with fully
Bayesian approaches is computation of the JMPD - which suffers from the
curse of dimensionality as the number of targets increases. The particle filter-
ing approximations to the JMPD developed in this chapter is one way to reduce
the complexity of the fully Bayesian approach.

Particle filters have been previously applied by others to extend MHT multi-
target tracking approaches to non-linear and non-Gaussian target dynamics. In
[119], Hue introduces the probabilistic multiple hypothesis tracker (PMHT),
which is a blend between the traditional MHT and particle filtering. Others
have blended JPDA and particle filtering ideas [127, 40].

The use of particle filters in fully Bayesian multi-target tracking problems
also has a recent history. By directly approximating the JMPD, the BraM-
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BLe [120] system, the independent partition particle filter (IPPF) of Orton and
Fitzgerald [189] and the work of Maskell [172] eliminate the need for data as-
sociation while retaining the flexibility of non-linear and non-Gaussian mod-
eling.

The approach described in this Chapter builds on these fully Bayesian par-
ticle filtering approaches and adds a significant innovation with respect to nu-
merics: the adaptive particle proposal method. By utilizing an adaptive sam-
pling scheme that exploits independence when present, the particle filtering
JMPD method described here provides significant computational advantages
over brute-force methods.

In our work (as in [189]) each particle encapsulates multiple targets simul-
taneously. Put another way, instead of using one particle per target we use
one particle per scenario. That is, a particle encodes a hypothesis about the
entire multi-target state – which includes the number of targets and the state
(position, velocity, etc.) of each target.

The fully Bayesian approach is distinguished from traditional approaches
of MHT and JPDA as well as the approaches of Hue [119, 118] and others
[127, 213, 79], which require thresholded measurements (detections) and a
measurement-to-track association procedure. Further, by estimating the joint
multi-target density rather than a many single target densities, our method
explicitly models target correlations. These two features together, combined
with the tractable numerical implementation discussed here, make the JMPD
method a quite broadly applicable approach.

2. The Joint Multitarget Probability Density

The JMPD is the probability density on a jump-diffusion system of the type
introduced for target-tracking applications in [223, 176]. The basic building
block is the single target state space s. For ground target applications the target
inertial state is x = [x, ẋ, y, ẏ]′ ∈ s = R4. At any instant the inertial state of
the surveillance volume is determined by X ∈ S ≡ ∅ ∪ ⋃∞

T=1 s
T where ∅

is a system with no targets and sT is a T -target system characterized by the
concatenated target state X = [x′

1, . . . ,x
′
T ]′, where x′ denotes the transpose

of vector x. The non-negative integer T is the number of targets in the scene.
For fixed T the target motion element of the dynamics undergoes a diffusive
evolution obeying an Itô equation of the type used in many nonlinear filtering
applications. Since T can vary in time, it makes discrete jumps as targets enter
or depart the scene. This is the “jump” part of the jump-diffusion dynamics.
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For tracking and sensor management applications we construct the posterior
density conditioned on a set of observations yi occurring at times τ i. Then
Yk is the collection of measurements up to and including time τ k, Yk =
{y1,y2, ...yk}. Each observation or “scan” yi may be a single measurement or
a vector of measurements made at time i. The posterior p(Xk, T k|Yk) is what
we mean by the “Joint Multitarget Probability Density” (JMPD). Notionally, in
the absence of any measurements (i.e., at initialization) the JMPD is uniform
in target number and uniform in target state conditioned on target number for
all target numbers. In practice, this may be modified by prior information such
as the location of roadways, waterways, and knowledge of terrain.

For simplicity, we will typically suppress time indices when they are not
important to the discussion. Furthermore, when it is clear by context, we may
write the JMPD p(X, T |Y) = p(x1, . . . ,xT |Y) as simply p(X|Y) and simi-
larly for transition densities and likelihood functions. For example,

p(∅|Y), is the posterior probability density for no targets in the surveil-
lance volume

p(x1|Y), is the posterior probability density for one target with state x1

p(x1,x2,x3|Y), is the posterior probability density for three targets
with respective states x1,x2 and x3

The subset of S with fixed T is referred to as the T -target sector of S . The
state vector xt corresponding to a single target is a partition of X. The JMPD
permutation symmetry discussed in the introduction can now be made precise:
the JMPD is symmetric on each sector under partition permutation,

p(x1, ...,xT |Yk) = p(xπ(1), ...,xπ(T )|Yk), (4.1)

where π is one of the T ! permutations of the T labels, π : i→ π(i).

We can gain insight into the role of this permutation symmetry by examining
the entropy of the JMPD compared with an unsymmetrical density. As shown
in Appendix 1, the entropy is

H(p) ≡
∞∑

T=0

∫
dx1 · · · dxT p(X|Y) ln(p(X|Y)). (4.2)

Consider the case of two well-localized targets restricted to the real line with
separation 2d given by the Gaussian sum
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p(x1, x2) = δ2,T (1/4π)
[
exp

(
−[(x1 − d)2 + (x2 + d)2]/2

)
(4.3)

+exp
(
−[(x1 + d)2 + (x2 − d)2]/2

) ]
,

where δi,j is the Kronecker δ-function. When d � 1 (5.3) gives two well-
separated peaks near (x1, x2) = ±(d,−d) and the entropy can be approxi-
mately evaluated as Hd�1 ≈ 1 + log(4π). On the other hand as d → 0 the
peaks coalesce to form a single mono-modal distribution, reducing the entropy
to Hd=0 = 1 + log(2π).

If we model this 2-target problem using the permutation non-symmetric ex-
pression pNS(x1, . . . , xT ) = δ2,T 1/2π exp

(
−[(x1 − d)2 + (x2 + d)2]/2

)
di-

rect calculation shows that the entropy is HNS = 1 + log(2π) independent
of the target separation. For the properly symmetrized density there is a rel-
ative reduction in entropy when targets are close together. This corresponds
to a reduction in the relevant phase space for the density in order to develop
efficient particle sampling schemes. To treat this aspect of the problem, we
have developed sampling techniques that explicitly account for the permuta-
tion symmetry. This is one of the key features of the JMPD approach that
differentiates it from other popular trackers such has the Multiple Hypothesis
Tracker (MHT) or Joint Probability Density Association (JPDA) tracker.

2.1 General Bayesian Filtering

Construction of a filter to update the posterior density as measurements
come in proceeds according to the usual rules of Bayesian filtering. Define
the aggregate target state at time k as the vector [Xk, T k]. Under a Markovian
model, the conditional density of the current target state given the past states
is given by p(Xk, T k|Xk−1, T k−1) and will be referred to as the kinematic
prior (KP). The kinematic prior describes probabilistically how the state of
the multi-target system evolves over time. It includes models of target motion,
target birth and death, and any additional prior information that may exist such
as terrain- and road-constraints. The time-updated density is computed via the
time update equation:

p(Xk, TK |Yk−1) =
∞∑

T (k−1)=0

∫
dXk−1p(Xk, T k|Xk−1, T k−1)p(Xk−1, T k−1|Yk−1). (4.4)

Observe that the number of targets in the scene can change with time update
when T k 6= T (k−1) to capture the effect of target birth and death. The mea-
surement update equation uses Bayes’ rule to update the posterior density with
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a new measurement yk:

p(Xk, T k|Yk) =
p(yk|Xk, T k)p(Xk, T k|Yk−1)

p(yk|Yk−1)
. (4.5)

2.2 Non-Linear Bayesian Filtering for a Single
Target

Non-linear Bayesian filtering generalizes linear filtering equations that gov-
ern the Kalman filter for linear Gaussian dynamics and measurements. A con-
venient starting point is the continuous-discrete non-linear filtering theory de-
veloped in Jazwinsky [123, Ch. 5]. To apply this theory, let xτ denote the
vector of inertial coordinates (position, velocity) of one of the targets indexed
over the continuous time variable τ . In this notation the discrete time state
vector xk = xτk

is the time sample of xτ at discrete time τ = τk, k = 1, 2, . . ..
We assume that the continuous time state vector xτ evolves according to the
Itô stochastic differential equation

dxτ = f(xτ , τ)dτ + g(xτ , τ)dβτ , τ ≥ τ0, (4.6)

where f is a known vector valued non-linear diffusion function, g is a matrix
valued noise scaling function, and βτ , τ ≥ τ0 is a vector valued Brownian mo-
tion process with covariance E[dβτdβ

>
τ ] = Q(τ)dτ . Note that both f and g

can be nonlinear functions of xτ in which case the target state evolves as a
non-Gaussian process.

Using the Itô state equation model (5.6) and measurement update equation
(5.5) the continuous time posterior density p(xτ |Yk) for τ ∈ [τk, τk+1] of the
state can be obtained by solving the Fokker-Planck Equation (FPE)

∂

∂τ
p(xτ |Yk) = L

(
p(xτ |Yk)

)
, τk ≤ τ < τk+1, (4.7)

with initial condition

p(xτ |Yk)
∣∣∣
τ=τk

= p(xk|Yk),

obtained from (5.5). In (5.7) the linear differential operator L is specified by
the functions f and g.

L(p) ≡ −
n∑

i=1

∂(fip)

∂xi
+

1

2

n∑

i,j=1

∂((gQg>)ijp)

∂xi∂xj
, (4.8)

with i, j indexing components of xτ .
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In the case that the measurements Yk are Gaussian and linear in the state xk,
and the Itô diffusion functions f and g are linear functions, the posterior density
is Gaussian and the measurement and time update equations of the Bayesian
filter can be solved by the linear Kalman filter for estimating the state [123].

2.3 Accounting for Target Birth and Death

The FPE operator (5.8) determines how the single target probability density
evolves in time due to the stochastic target kinematics. The time evolution of
the full multi-target JMPD is simply a linear superposition of FPE operators
acting on the partitions of each T -target segment of the concatenated inertial
state vector X,

∂

∂t
p(X)

∣∣∣
FPE

=

T∑

t=1

Lt (p(X)) . (4.9)

The other aspect of temporal evolution that must be addressed is the effect
of changes in the number of targets, sometimes referred to as target birth and
death. Here we adopt a Markovian birth-death process model. Births of targets
occur with birth rate Λ+(x, t), where the arguments x and t denote the loca-
tions and times at which a target emerges. For simplicity assume that the birth
rate is constant over time so that Λ+(x, t) = Λ+(x).

Target birth must maintain the JMPD permutation symmetry property. This
requires explicit symmetrization through summation over all T -target permu-
tations

∂

∂t
p(X)

∣∣∣
T−1→T

=
1

T !

∑

π

p
(
xπ1 , . . . ,xπT−1

)
Λ+(xπT

) (4.10)

=
1

T

∑

ρ

p
(
xρ1 , . . . ,xρT−1

)
Λ+(xρT

),

where ρ is the subset of permutations ρi : (1, . . . , T ) → (1, . . . , i − 1, T, i +
1, . . . , T − 1), i = 1, . . . , T . Since p (x1, . . . ,xT−1) is permutation symmet-
ric, only T terms are required in this summation. Target birth also contributes
a loss term in the T -target density through transitions from T -target states to
(T + 1)-target states

∂

∂t
p(X)

∣∣∣
T→T+1

= −
T∑

t=1

∫
dxtΛ

+(xt)p (x1, . . . ,xT ) . (4.11)

Target death is treated similarly defining the state-space dependent death
rate Λ−(x). The T -target JMPD sector decreases when the T targets are
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present and one dies while it increases when there are T + 1 targets and one
dies. These contribute time dependencies

∂

∂t
p(X)

∣∣∣
T→T−1

= −
T∑

t=1

Λ−(xt)p (x1, . . . ,xT ) (4.12)

= −TΛ−(xT )p (x1, . . . ,xT ) ,

and

∂

∂t
p(X)

∣∣∣
T+1→T

= +

T+1∑

t=1

∫
dxtΛ

−(xt)p (x1, . . . ,xT+1) (4.13)

= (T + 1)

∫
dxT+1Λ

−(xT+1)p (x1, . . . ,xT+1) .

Combining these terms leads to the full multi-target Fokker-Planck equation

∂

∂t
p(X) =

T∑

t=1

Lt (p(X)) (4.14)

+
1

T

∑

ρ

p
(
xρ1 , . . . ,xρT−1

)
Λ+(xρT

) −
T∑

t=1

∫
dxtΛ

+(xt)p (x1, . . . ,xT )

−TΛ−(xT )p (x1, . . . ,xT ) + (T + 1)

∫
dxT+1Λ

−(xT+1)p (x1, . . . ,xT+1) .

The posterior JMPD, p(Xk|Yk), is propagated to p(Xk+1|Yk) using the
same multi-target Fokker-Plank equation with initial condition p(Xτ |Yk)

∣∣
τ=τk

=

p(Xk|Yk), analogous to eq. (5.7).

2.4 Computing Renyi Divergence

Chapter 4 discuses several alternative information theoretic metrics that can
be used in sensor management applications. The expected Renyi divergence
can be evaluated for JMPD and used to predict the information gain expected
for a set of alternative sensing actions. For sensor management the relevant
quantity is the divergence between the predicted density p(Xk, T k|Yk−1) and
the updated density after a measurement is made, p(Xk, T k|Yk) given by

Dα

(
p(·|Yk)||p(·|Yk−1)

)
=

1

α− 1
ln

∞∑

T k=0

∫
dXkp(Xk, T k|Yk)αp(Xk, T k|Yk−1)1−α. (4.15)
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We follow the principle that measurements should be selected that maximize
the information gain, i.e., the divergence between the post-updated density,
p(Xk, T k|Yk), and the pre-updated density, p(Xk, T k|Yk−1). To do this, let
a (1 ≤ a ≤ A) index feasible sensing actions such as sensor mode selection
and sensor beam positioning. The expected value of equation (5.14) can be
written as an integral over all possible outcomes ya when performing sensing
action a:

〈Dα〉a =

∫
dyp(y|Yk−1, a)Dα

(
p(·|Yk)||p(·|Yk−1)

)
. (4.16)

2.5 Sensor Modeling

Implementing the Bayes update (5.5) requires evaluating the measurement
likelihood function p(y|X). We use an association-free model instead of the
more common associated measurement model. In the associated measurement
model, e.g. JPDA, an observation vector consists of M measurements, de-
noted y = (y1, . . . , yM ) where y is composed of threshold exceedances, i.e.,
valid detections and false alarms. The model usually assumes that each mea-
surement is generated by a single target (the valid measurements) or by clutter
and noise (false alarms). The valid measurements are related (possibly non-
linearly) to the target state in a known way. If measurement m is generated
by target t, then it is a realization of the random process ym ∼ Ht(xt, wt).
False alarms have a known distribution independent of the targets and the tar-
gets have known detection probability Pd (often modeled as constant for all
targets). The origin of each measurement is unknown so a significant portion
of any algorithm based on the associated measurement model goes to deter-
mining how the measurements correspond to possible targets either through
some sort of likelihood weighting (MHT and PDA) or a maximum likelihood
assignment process (e.g. multidimensional assignment).

The associated measurement model is widely used and a number of success-
ful tracking systems are based on it. Its practical advantage is that it breaks the
tracking problem into two disjoint sub-problems: data association and filtering.
While the data association problem is challenging, filtering can be performed
using a linearized approach, such as the extended Kalman filter, which is quite
efficient. However, there are two disadvantages to the associated measurement
model. First, it is based on an artificial idealization of how sensors work in
that it assumes each valid detection comes from a single target. This makes it
challenging to treat measurement interactions amongst close targets. Second,
it requires solution of the data association problem, which usually consumes a
large amount of computing resources.
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While most data association systems ultimately rely on some variant of the
Kalman filter, the use of nonlinear filtering methods such as the particle fil-
ter frees us to explore new approaches such as association-free methods for
computing the full Bayesian posterior density. This type of model has been
used in track-before-detect algorithms, such as the “Unified Data Fusion” work
of Stone et. al. [223] and in [130]. There are several advantages to the
association-free method. First, it requires less idealization of the sensor physics
and can readily accommodate issues such as merged measurements, side-lobe
interference amongst targets and velocity aliasing. Second, it eliminates the
combinatorial bottleneck of the associated-measurement approach. Finally, it
simplifies the processing of unthresholded measurements to enable improved
tracking at lower target SNR.

The starting point for developing an association-free model is the recogni-
tion that nearly all modern sensor systems produce multidimensional arrays of
pixelized data in some form. The sensor measures return energy from a scene,
digitizes it and performs signal processing to produce measurements consisting
of an array real or complex amplitudes. This can be 1-dimensional (a bearing-
only passive acoustic or electronic sensing measures system), 2-dimensional
(an electro-optical imager), 3-dimensional (the range, bearing, range-rate mea-
surements of a GMTI system), or higher dimensional data.

The measurement likelihood p(y|X) describes how amplitudes in the pixel
array depend on the state of all of the targets and background in the surveillance
region. To be precise, a sensor scan consists of M pixels, and a measurement
y consists of the pixel output vector y = [y1, . . . , yM ]′, where yi is the output
of pixel i. yi can be an integer, real, or complex valued scalar, a vector or
even a matrix, depending on the sensor. If the data are thresholded, then each
yi will be either a 0 or 1. Note that for thresholded data, y consists of both
threshold exceedances and non-exceedances. The failure to detect a target at
a given location can have as great an impact on the posterior distribution as a
detection.

In the simulation studies described below we model pixel measurements as
conditionally independent, yielding

p(y|X) =
∏

i

p(yi|X). (4.17)

Let χi(xt) denote the indicator function for pixel i, defined as χi(xt) = 1
when a target in state xt projects into sensor pixel i (i.e., couples to pixel i)
and χi(xt) = 0 when it does not. A pixel can couple to multiple targets and
single target can contribute to the output of multiple pixels, say, by coupling
through side-lobe responses. The indicator function for the joint multi-target
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state is the logical disjunction

χi(X) =
T∨

t=1

χi(xt) (4.18)

The set of pixels that couple to X is

iX = {i|χi(X) = 1} (4.19)

For the pixels that do not couple to any targets the measurements are char-
acterized by the background distribution, denoted p0(yi) (this can generally
depend on where the pixel is within the scene but here we assume a constant
background). With this, (5.17) becomes

p(y|X) =
∏

i∈iX

p(yi|X)
∏

i/∈iX

p0(yi) ∝
∏

i∈iX

p(yi|X)

p0(yi)
(4.20)

In the last step of (5.20) we have dropped the X-independent factor
∏

i p0(yi)
since it makes no contribution to the JMPD measurement update.

To completely specify the measurement likelihood we must determine how
targets couple to the individual pixels. In our simulations the sensor response
within pixel i is uniform for targets in i and vanishes for targets outside pixel
i. This is equivalent to modeling the point-spread function as a boxcar. It is
convenient to define the occupation number ni(X) for pixel i as the number of
targets in X that lie in i. The single target signal-noise-ratio (SNR), assumed
constant across all targets, is denoted λ. We assume that when multiple targets
lie within the same pixel their amplitudes add non-coherently. Then the effec-
tive SNR when there are n targets in a pixel is λn = nλ and we use pn(yi) to
denote the pixel measurement distribution. In this model the measurement dis-
tribution in pixel i depends only on its occupation number and (5.20) becomes

p(y|X) ∝
∏

i∈iX

pni(X)(yi)

p0(yi)
. (4.21)

The effect of the sensor on the measurement likelihood can be determined
by detailed modeling, e.g. studying the radar ambiguity function and radar
processing noise statistics for different waveforms as in Chapter 11. We adopt a
simple approximation here which reduces the effect of the sensor to two scalar
parameters: the range-azimuth-elevation cell resolution and the SNR. In partic-
ular, we assume a cell-averaged scalar Rayleigh-distributed measurement cor-
responding to envelope detected signals under a Gaussian noise model. Such
a model has been used to model interfering targets in a monopulse radar sys-
tem [36, 233] and to model clutter and target returns in turbulent environments
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[101]. Rayleigh models are also often used for diffuse fading channels. In the
unthresholded case, the likelihood function is

pn(y) =
y

1 + nλ
exp

(
− y2

2(1 + nλ)

)
. (4.22)

When the tracker only has access to thresholded measurements, we use a
constant false-alarm rate (CFAR) model for the sensor. The background false
alarm rate is set to a level Pf ∈ [0, 1] by selecting a threshold η such that:

P (y > η|clutter alone) =

∫ ∞

η
pn(y)dy = Pf . (4.23)

Under the Rayleigh model the detection probability is

Pd,n = P
1

1+nλ

f , (4.24)

where n is the number of targets in the cell. This extends the usual relation
Pd = P

1
1+λ

f for thresholded Rayleigh random variables at SNR λ [33].

Note that this simple thresholded Rayleigh model can be easily extended
to account for other sensor characteristics, e.g. its non-Gaussian noise, am-
plitude saturation, or other non-linearities. Once the likelihood function has
been specified, as in (5.20), the posterior density (JMPD) can be updated with
new measurements via (5.5). However, as the likelihood function (5.20) is
not Gaussian this requires some form of function approximation. In the next
section the particle filtering approximation to the JMPD is described.

3. Particle Filter Implementation of JMPD

We begin with a brief review of the Sampling Importance Resampling (SIR)
particle filter for single targets. This can be generalized directly to produce a

SIR JMPD particle filter for multiple targets. The salient feature of the SIR
filter is that it uses the kinematic prior as the so-called importance density used
to propose new particle states in the time update step.

The SIR filter is a relatively inefficient particle filter and the JMPD SIR filter
requires a very large number of particles to track even a modest number of
targets. This is largely due to the high dimensionality of the multi-target phase
space. Also, when targets are close together we have seen that the entropy of
the JMPD is reduced relative to that of a permutation non-symmetric multi-
target density. The smaller entropy means that the relevant phase space region
is further reduced, placing a great premium on efficient sampling methods.
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While the kinematic prior automatically preserves permutation symmetry, care
is required when using more sophisticated schemes and has led us to develop
Independent Partition (IP), Coupled Partition (CP), Adaptive Partition (AP)
and Joint Sampling (JS) methods detailed below.

3.1 The Single Target Particle Filter

To implement a single target particle filter, the single target density of in-
terest, p(x|Y), is approximated by a set of Npart weighted samples (particles)
[10, 98]:

p(x|Y) ≈
Npart∑

p=1

wpδD(x − xp), (4.25)

where δD is the Dirac delta function.

The time update (5.4) and measurement update (5.5) are simulated by the
following three step recursion of Table 5.1. First, the particle locations at
time k are generated using the particle locations xp at time k − 1 and the
current measurements yk by sampling from an importance density, denoted
q(xk|xk−1,yk). The design of the importance density is a well studied area
[78] since it plays a key role in the efficiency of the particle filter algorithms. It
is known that the optimal importance density (OID) is p(xk|xk−1,yk), but
this is usually prohibitively difficult to sample from. The kinematic prior
p(xk|xk−1) is a simple but suboptimal choice for the importance density.

The second step in the implementation of the particle filter is to update par-
ticle weights according to [10].

wk
p = wk−1

p

p(yk|xk
p)p(x

k
p|xk−1

p )

q(xk
p|xk−1

p ,yk)
. (4.26)

When using the kinematic prior as the importance density, the weight equation
reduces to wk

p = wk−1
p p(yk|xk

p).

Finally, particle resampling is performed to prevent particle degeneracy.
Without resampling, the variance of the particle weights increases with time,
yielding a single particle with all the weight after a small number of iterations
[77]. Resampling may be done on a fixed schedule or adaptively, based on
variance of the weights. The particle filter algorithm that uses the kinematic
prior as the importance density q(xk

p|xk−1
p ,yk) and resamples at each time step

is called the sampling importance resampling (SIR) algorithm.
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Table 4.1. SIR Single Target Particle Filter (Table I from [149] which is c©2005 IEEE - used
with permission)

1 For each particle p, p = 1, · · · , Npart,
(a) Particle proposal: Sample xk

p ∼ q(xk|xk−1,yk) = p(x|xk−1
p )

(b) Particle weighting: Compute wk
p = wk−1

p p(y|xp) for each p.
2 Weight normalization: Normalize wk

p to sum to one over p

3 Particle resampling: Resample Npart particles with replacement
from xp based on the distribution defined by wp

3.2 The Multitarget Particle Filter

To implement the particle filter for approximating the multiple target JMPD
we must sample from the surveillance volume belief state defined by (5.5).
We approximate the joint multi-target probability density p(X|Y) by a set of
Npart weighted samples. For p = 1, . . . , Npart, particle p has Tp targets and is
given by

Xp = [x′
p,1, . . . ,x

′
p,Tp

]′. (4.27)

Defining

δ(X −Xp) =

{
0 T 6= Tp

δD(X−Xp) otherwise , (4.28)

the particle filter approximation to the JMPD is given by a set of particles Xp

and corresponding weights wp as

p(X|Y) ≈
Npart∑

p=1

wpδ(X −Xp), (4.29)

where
∑
wp = 1. This is analogous to a multiple hypothesis tracker in that

different particles in the sample may correspond to different hypotheses for the
number Tp of targets in the surveillance region.

With these definitions the SIR particle filter extends directly to JMPD filter-
ing, as shown in Table 5.2. This simply proposes new particles at time k using
the particles at time k− 1 and the target kinematics model (5.6) while (5.21) is
used in the weight update. Target birth and death given in (5.14) corresponds
to probabilistic addition and removal of partitions within particles.
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Table 4.2. SIR Multitarget Particle Filter (Table II from [149] which is c©2005 IEEE - used
with permission)

1 For each particle p, p = 1, ..., Npart,
(a) Particle proposal: Sample Xk

p ∼ q(X, T |Xk−1
p , T k−1

p ,yk) =
p(X, T |Xk−1

p , T k−1
p )

(b) Particle weighting: Compute wk
p = wk−1

p p(y|Xk
p) for each p.

2 Weight normalization: Normalize wk
p to sum to one over p

3 Particle resampling: Resample Npart particles with replacement
from Xk

p based on wk
p

3.3 Permutation Symmetry and Improved
Importance Densities for JMPD

The probability of generating a high-likelihood particle proposal using the
kinematic prior of the SIR filter decreases as the number of partitions in a par-
ticle grows. This is due to the fact that the likelihood of multi-target proposal is
roughly the product of the likelihoods for each partition on its own (this is made
precise below). As a result, if a few partitions fall in low-likelihood regions the
entire joint proposal likelihood is low. This suggests that improved JMPD
importance densities can be developed by first generating high-likelihood pro-
posals for each partition and then combining high-likelihood partition propos-
als to generate multi-target proposals. The key challenge is that, due to the
JMPD permutation symmetry, there is no unique ordering of the partitions in
the JMPD particles: the single target state vector corresponding to a particular
target can appear in different partitions in different particles. Even if we ini-
tialize a filter with ground truth so that all of the particles correspond to the
same target ordering, the order generally changes in some particles as targets
approach each other and there is measurement to target association uncertainty
(we refer to this as “partition swapping”). This is not a pathology of the ap-
proach and is not to be regarded as symptomatic of an incorrect formulation.
It is, in fact, a reflection of the physics of the underlying problem. The key to
addressing this issue is to impose a particular ordering on the partitions in all of
the targets. Then the correspondence between partitions in different particles
is well defined, allowing us to develop partition-based proposal schemes that
significantly improve the efficiency of the JMPD-PF. This partition ordering
does not violate the permutation symmetry requirement of the JMPD if we ap-
proximate it by an appropriately symmetrized function of the sample particles.

To gain more insight into this issue, consider the JMPD for two targets in
one dimension introduced in (5.3). For widely separated, well-localized targets
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the JMPD has two distinct peaks in the (x1, x2) plane. Samples from p(x1, x2)
can fall in either the upper or lower diagonal half-plane. For convenience we
can choose to approximate p using samples with a particular permutation sym-
metry, say only those in the upper half plane x2 ≥ x1, explicitly symmetrizing
as needed. Now as the targets approach each other, the peaks of the JMPD
approach the diagonal x1 = x2. Even if we initially approximate the density
with particles that only lie in the upper half-plane, when the targets approach
each other two peaks coalesce along the diagonal. This effect leads to the en-
tropy reduction noted in Section 2. If we generate random samples from the
JMPD where the targets are close together, some samples will lie in the upper
half-plane while others are in the lower half-plane. This suggests the following
strategy: When the targets are widely separated we can impose a fixed partition
ordering on the particles and use that ordering to construct efficient proposals.
When the targets are close together, we must account for the fact that different
samples may have different partitions as we construct proposals. Proposals that
are more efficient than kinematic proposals can be constructed, but we incur
additional overhead when the targets are close together.

3.4 Multi-target Particle Proposal Via
Individual Target Proposals

While the kinematic prior is simple to implement, it requires a large number
of particles (see Figure 5.5 below). The kinematic prior does not account for
the fact that a particle represents many targets. Targets that are far apart in
measurement space behave independently and should be treated as such. An-
other drawback to kinematic prior is that current measurements are not used
when proposing new particles. These considerations taken together result in a
very inefficient use of particles and therefore require large numbers of particles
to successfully track.

To overcome the deficiencies mentioned above, we have employed alterna-
tive particle proposal techniques which bias the proposal process towards the
measurements and allow for factorization of the target state when permissible.
These strategies propose each partition (target) in a particle separately, and
form new particles as the combination of the proposed partitions. We describe
several methods here, beginning with the independent partitions (IP) method of
[189] and the coupled partitions (CP) method. The basic idea of both CP and IP
is to construct particle proposals at the target level, incorporating the measure-
ments so as to bias the proposal towards the optimal importance density. We
show that each has benefits and drawbacks and propose an adaptive partition
(AP) method which automatically switches between the two as appropriate.
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The permutation symmetry of the JMPD must be carefully accounted for
when using these sampling schemes. The CP method proposes particles in a
permutation invariant manner, however it has the drawback of being computa-
tionally demanding. When used on all partitions individually, the IP method
is not permutation invariant. Our solution is to perform an analysis of the par-
ticle set to determine which partitions require the CP algorithm because they
are involved in partition swapping and which partitions may be proposed via
the IP method. This analysis leads to the AP method of proposal which is
permutation invariant.

3.4.1 Independent-Partition (IP) Method. Summarized in
Table 5.3, the independent partition (IP) method of Orton [189] is a convenient
way to propose particles when part or all of the joint target posterior density
factors. The Independent-Partition (IP) method proposes a new partition inde-
pendently as follows. For a partition t, each particle at time k − 1 has it’s tth
partition proposed via the kinematic prior and weighted by the measurements.
From this set of Npart weighted estimates of the state of the tth target, we se-
lect Npart samples (with replacement) to form the tth partition of the particles
at time k.

Note that the importance density q is no longer simply the model of target
kinematics p(Xk|Xk−1) as in the SIR Multitarget particle filter. Therefore
the weight given by the weight equation (5.26) does not simply become the
likelihood p(yk|Xk). There is a bias added which emphasizes partitions with
high likelihood. To account for this sampling scheme, the biases corresponding
to each particle for each target, bp,t, are retained to use in conjunction with the
likelihood p(yk|Xk) when computing particle weights.

The IP method is predicated on the assumption that partition t in each par-
ticle corresponds to the same target. Therefore, the partitions in each particle
must be identically ordered before this method is applied. If IP is applied
to particles that have different orderings of partitions, multiple targets will be
grouped together and erroneously used to propose the location of a single tar-
get.

3.4.2 Coupled Partition (CP) Proposal Method. When
the marginal posterior target distributions for different targets begin to overlap,
the corresponding partitions are coupled and the IP method is no longer ap-
plicable. This situation requires a Coupled Partition (CP) scheme. We proceed
as follows (see table 5.4). To propose partition t of particle p, CP generates R
possible realizations of the future state using the kinematic prior. The R pro-
posed future states are then given weights using the current measurements and
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Table 4.3. Independent Partition Particle Filter (Table III from [149] which is c©2005 IEEE -
used with permission)

1 For each partition, t = 1 · · ·Tmax,

(a) Partition Proposal: Propose partition t via Independent Partition
Subroutine

2 Particle weighting: Compute wk
p = wk−1

p ∗
p(y|Xp)

� Tp
t=1

bp,t

3 Weight normalization: Normalize wk
p to sum to one over p.

Independent Partition Subroutine for Target t:

1 For each particle p = 1, ..., Npart,

(a) Particle partition proposal: Sample X∗
p,t ∼ p(x|Xk−1

p,t )

(b) Particle partition weighting: Compute ωp = p(y|X∗
p,t)

2 Partition weight normalization: Normalize ω to sum to one over p.
3 For each particle p = 1, ..., Npart,

(a) Index selection: Sample an index j from the distribution defined
by ω

(b) Particle partition selection: Set Xp,t = X∗
j,t

(c) Bias balancing: Retain bias of sample, bp,t = ωj

a single representative is selected. This process is repeated for each particle
until the tth partition for all particles has been formed. This is an auxiliary
particle filter of the type suggested in [194] where the multiplicity R plays the
role of the auxiliary variable. As in the IP method, the final particle weights
must be adjusted for biased sampling.

Stated in the language of genetic algorithms, the difference between CP and
IP is that CP “maintains pedigree,” i.e., all of the partitions in a new proposed
particle must have come from a common ancestor while IP permits cross-
breeding from different ancestors. Target birth and death are included in both
CP and IP algorithms by adding or deleting partitions as determined by the
target birth and death rates.

3.4.3 Adaptive Particle Proposal Method. IP and CP can
be combined adaptively to provide a scheme that delivers the speed advantage
of IP for partitions that correspond to widely separated targets (usually the
majority of targets) together with improved tracking for coupled targets. The
Adaptive-Partition (AP) method analyzes each partition separately. Partitions
that are sufficiently well separated according to a given metric (see below)
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Table 4.4. Coupled Partition Particle Filter (Table IV from [149] which is c©2005 IEEE -
used with permission)

1 For each partition, t = 1 · · ·Tmax

(a) Partition proposal: Propose partition t via Coupled Partition Sub-
routine

2 Particle weighting: Compute wk
p = wk−1

p ∗
p(y|Xp)

� Tp
t=1

bp,t

3 Weight normalization: Normalize wk
p to sum to one over p

Coupled Partition Subroutine for Target t

1 For each particle p = 1, ..., Npart,
(a) Particle partition proposals: For each proposal r = 1, ..., R

i Sample X∗
p,t(r) ∼ p(x|Xk−1

p,t )

ii Compute ωr = p(y|X∗
p,t(r))

(b) Proposal weight normalization: Normalize ω to sum to one.
(c) Index selection: Sample an index j from the distribution defined

by ω

(d) Partition selection: Set Xp,t = X∗
p,t(j)

(e) Bias balancing: Retain bias of sample, bp,t = ωj

from all other partitions are treated as independent and proposed using the IP
method. When targets are not well-separated, the CP method is used.

To provide a criterion for partition separation, we threshold based on dis-
tance in sensor space between the estimated state of the ith partition and the
jth partition. Denote by x̂i the estimated x and y positions of the ith partition
(5.42). Notice only the spatial states are used (i.e., velocities are neglected), as
these are the states that measure distance in sensor space. We have computed
the distance between two partitions using a Euclidian metric between the esti-
mated centers, and the Mahalanobis metric (5.30), where Σ̂j is the covariance
associated with the estimate of the j th partition (5.43).

r2 = (x̂i − x̂j)
′Σ̂−1

j (x̂i − x̂j). (4.30)

We have studied the use of a nearest neighbor criterion, where partitions are
considered coupled if any sample from partition i is closer to the center of
partition j then any sample from partition j. In practice, we find that the
Euclidian distance is less computationally burdensome and provides similar
performance.
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Table 4.5. Adaptive Proposal Method (Table V from [149] which is c©2005 IEEE - used with
permission)

1 For each partition t = 1 : Tmax

(a) Distance computation: d(t) = minj 6=t ||x̂t − x̂j ||

(b) Partition proposal: if d(t) > τ

Propose partition t using IP method
else

Propose partition t using CP method
2 Particle weighting: For each particle p = 1, ..., Npart

wk
p = wk−1

p ∗
p(y|Xp)

� Tp
t=1

bp,t

3 Weight normalization: Normalize wk
p to sum to one.

3.5 Multi-target Particle Proposal Via Joint
Sampling

In the IP, CP and AP methods as described above, samples are drawn in-
dependently for each target. Recall that this approach is motivated by the ap-
proximate factorization of the JMPD for well-separated targets. However, this
approximate factorization does not hold for closely-spaced targets. As a result,
if multiple targets are in close proximity drawing samples independently for
each target leads to many particles being proposed in undesirable parts of the
multi-target state space. Instead, particles for closely spaced targets should be
drawn jointly, conditional on the previous target states and the current mea-
surement.

Therefore a joint sampling refinement to the method promises to improve
performance. In this method, those partitions that are deemed to be coupled are
clustered according to the method of section 3.3. This results in “partitions”
that contain multiple targets – some with 2 targets, some with 3 targets, etc.
Then instead of proposing each target individually, the clustered pairs (triplets,
etc.) of targets are proposed all at once. This method is summarized in Table
5.6. Note that the idea of a partition containing multiple targets is also present
in the work of Orton [189], although adaptively deciding partition boundaries
and partition clustering is new to this work.

To understand how this joint sampling method works, Fig. 5.1 illustrates
a scenario with two targets moving along the real line in opposite directions
with equal speed. The importance density should propose as many particles as
possible with the correct arrangement of targets, in this case one target in each
of the cells.
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Table 4.6. Modified Adaptive Proposal Method

1 Partition clustering: Construct non-overlapping target clusters
C1, . . . , Cs, s ≤ r such that ∪s

l=1Cl = {1, . . . , T}, and if i ∈ Cl then
‖x̂i − x̂j‖ < Γ⇒ j ∈ Cl where Γ is a threshold.

2 For each cluster, l = 1 · · · s

(a) Cluster proposal: if cluster Cl has one entry,
Propose group c using IP method

else
Propose group c using CP method

3 Particle weighting: Compute the weights wk
p = wk−1

p
p(y|Xp)

�
s
l=1

bp,l

4 Weight normalization: Normalize wk
p to sum to one.

Let xk
i = (ρk

i , v
i
k) denote the state of target i with ρk

i the position and vk
i

the velocity. The weight given to a particular arrangement of targets can be
measured by the probability

I(V1, V2) =

∫

V1

dρk
1

∫ ∞

−∞
dvk

1

∫

V2

dρk
2

∫ ∞

−∞
dvk

2q(X
k|Xk−1,yk). (4.31)

where the Vi are cell volumes. Ideally we would have I([0, 1], [−1, 0]) = 1,
i.e., all samples for each target would be placed in the cell occupied by that
target. If both targets are detected, the joint sampling importance density has
I([0, 1], [−1, 0]) = 0.977 while the independent sampling importance density
has I([0, 1], [−1, 0]) = 0.754. Thus, the joint sampling density places a higher
proportion of particles in the correct cells compared to the independent sam-
pling density. The benefits of joint sampling become even more apparent if
only one target is detected. In this case I([0, 1], [−1, 0]) = 0.692 for joint
sampling and I([0, 1], [−1, 0]) = 0.003 for independent sampling.

Target 1Target 2

0-1 +1
Figure 4.1. Crossing target scenario for demonstration of joint target proposals

Joint sampling of particles is more computationally expensive than inde-
pendent sampling. In particular, the computational expense of jointly draw-
ing samples for a group of targets increases exponentially with the number
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of targets. Fortunately, this intractable increase in computational expense can
be avoided by exploiting the approximate factorization of the JMPD for well-
separated targets. This approximate factorization is illustrated in Fig 5.2 which
shows the probability of correct placement of the particles plotted against tar-
get separation for joint and independent sampling. Results are given for the
cases where both targets are detected and only one target is detected. It can be
seen that for a sufficiently large separation the independent sampling density
will almost certainly place particles in the correct location. In such cases the
computational expense of joint sampling is unnecessary and should be avoided.
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Figure 4.2. Probability of correct placement of particles for joint sampling (solid) and inde-
pendent sampling (dashed) plotted against target separation when (a) both targets are detected
and (b) only one target is detected.

In certain circumstances, the optimal importance density can be even more
efficiently approximated than the sample based approach discussed here. In
particular, if target dynamics are linear/Gaussian and measurements are made
on a grid, the optimal proposal involves sampling from truncated normals
[178]. In this case, a similar AP approach is used wherein partitions are first
separated into groups that are uncoupled and then each group is treated by
sampling from multidimensional truncated normals. This results in optimal
sampling from each of the clusters giving even more efficient particle utiliza-
tion.

3.6 Partition Ordering

As we have seen, the permutation symmetry associated with the JMPD
discussed in Section 2 is inherited by the particle filter representation of the
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JMPD. Each particle contains many partitions (as many as the number of tar-
gets it hypothesizes to exist) and the permutation symmetry of JMPD manifests
through the fact that the relative ordering of targets may change from particle
to particle.

The fact that partitions are in different orders from particle to particle is of no
consequence when the object of interest is an estimate of the joint multi-target
density. Each particle contributes the correct amount of mass in the correct
location to the multi-target density irrespective of the ordering of its partitions.

However, the IP scheme gains efficiency by permitting hybridization across
particles and so requires that particles be identically ordered. Furthermore, es-
timating the multi-target states from the particle filter representation of JMPD
must also be done in a way that is invariant to permutations of the particles.
Therefore, when estimating target states, we permute the particles so that each
particle has the targets in the same order. We use a K-means [107] algorithm
to cluster the partitions of each particle, where the optimization is done across
permutations of the particles. In practice, this engenders a very light compu-
tational burden. The are two reasons for this. First, partitions corresponding
to widely separated targets are not coupled and so remain ordered. Second,
since ordering is applied at each time step, so that those coupled partitions are
always nearly ordered and so one iteration of the K-means algorithm is usually
enough to find an optimal permutation.

As shown in Table 5.7, the K-means algorithm consists of the following.
Under the permutation πp, the particle

Xp = [xp,1,xp,2, · · · ,xp,Tp ], (4.32)

is reordered as

Xp = [xp,πp(1),xp,πp(2), · · · ,xp,πp(Tp)]. (4.33)

The mean of the tth partition under the permutation π is

X̄t(π) =

Nparts∑

p=1

wpXp,πp(t), (4.34)

where it is understood that the summation is taken over only those particles
that have partition t. Further, define the χ2 statistic

χ2(π) =

Nparts∑

p=1

Tp∑

t=1

wp(Xp,πp(t) − X̄t(πp))
2. (4.35)
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To reorder the particles, the goal is to find the set of permutations π that
minimize χ2, i.e.,

π̂ = min
π
χ2(π). (4.36)

The K-means algorithm is a well known method of approximately solving
problems of this type. An initial π is assumed and perturbations about that
value are made to descend and find the best (local) π.

Table 4.7. K-means Algorithm Optimizing Over Partition Orderings (Table VI from [149]
which is c©2005 IEEE - used with permission)

1 Initialize ordering: Initialize with π = current ordering of partitions
2 Compute means: Compute X̄t(π) for t = 1 · · ·Tp using (5.34)
3 Permute particles: For each particle p, permute the particle (update πp)

to yield

πp ← arg min
πp

Tp�

t=1

(Xp,πp(t) − X̄t(πp))
2

4 Attempt termination: If no particles have changed permutation, quit.
Otherwise set π = (π1, · · · , πp, · · · , πNpart ) and go to 2

3.7 Estimation

Particle estimates of various interesting quantities can be computed. The
central quantity of interest for sensor management is the expected Renyi Di-
vergence. Using the particle filter representation for the JMPD and inserting
that into (5.16) yields

〈Dα〉m =
1

α− 1

1∑

y=0

p(y) ln
1

p(y)α

Npart∑

p=1

wpp(y|Xp)
α (4.37)

To compute the probability of exactly n targets in the surveillance volume,
first define the indicator variable Ip(n) for p = 1...Nparts,

Ip(n) =

{
1 if Tp = n
0 otherwise (4.38)

Then the probability of n targets in the surveillance volume, p(n|Y), is given
by
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p(n|Y) =

Npart∑

p=1

Ip(n)wp (4.39)

The estimate of the probability that there are n targets in the surveillance
volume is the sum of the weights of the particles that have n partitions. Note
that the particle weights, wp, are normalized to sum to unity for all equations
given in this section.

To compute the estimated target state and covariance of target i, we first
define a second indicator variable Ĩp(i) which indicates if particle p has a par-
tition corresponding to target i. This is necessary as each particle is a sample
drawn from the JMPD and hence may have a different number of partitions
(targets):

Ĩp(i) =

{
1 if target i exists in particle p
0 otherwise (4.40)

Note that the sorting procedure of Section 3.3 has already identified an or-
dering of particles to allow Ĩp(i) to be determined. Furthermore, we define the
normalized weights to be

ŵp =
wpĨp(i)∑Npart

l=1 Ĩl(i)wl

(4.41)

So ŵp is the relative weight of particle p, with respect to all particles tracking
target i. Then the estimate of the state of target i is given by

X̂(i) = E[X(i)] =

Npart∑

p=1

ŵpXp,i (4.42)

which is simply the weighted summation of the position estimates from those
particles that are tracking target i. The covariance estimate is

Λ̂(i) =

Npart∑

p=1

ŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (4.43)
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3.8 Resampling

In the traditional method of resampling, after each measurement update,
Npart particles are selected with replacement from Xp based upon the particle
weights wp. The result is a set of Npart particles that have uniform weight
which approximate the multi-target density p(X|Y). The particular resam-
pling that was used in this work is systematic resampling [10]. This resam-
pling strategy is easily implemented, runs in order Nparts, is unbiased, and
minimizes the Monte Carlo variance. Many other resampling schemes and
modifications are presented in the literature [78]. Of these methods, we have
found that adaptively choosing at which time steps to resample [163] based
on the number of effective particles leads to improved performance while re-
ducing compute time. All results presented herein use the method of [163]
to determine which times to resample and use systematic resampling [10] to
perform resampling. We have also found that Markov Chain Monte Carlo
(MCMC) moves using a Metropolis-Hastings scheme [78] leads to slightly
improved performance in our application.

4. Multitarget Tracking Experiments

In this section we present performance results for the particle filtering tech-
niques described above, focusing on tracking applications. Chapter 6 presents
sensor management results obtained using these techniques. We begin with
a set of experiments that shows the impact of the different proposal methods
on tracking accuracy and numerical requirements. We then present a few re-
sults showing the effect of thresholding on tracker performance and the perfor-
mance gain that can be achieved from using prethresholded measurements in
our association-free approach.

We illustrate the performance of our multi-target tracking scheme by con-
sidering the following scenario. Targets move in a 5000m × 5000m sur-
veillance area. Targets are modeled using the four-dimensional state vector
x = [x, ẋ, y, ẏ]′. The target motion in the simulation is taken from a set of
recorded data based on GPS vehicle measurements collected as part of a battle
training exercise at the Army’s National Training Center. This battle simula-
tion provides a large number of real vehicles following prescribed trajectories
over natural terrain. Based on an empirical fit to the data, we found that a
nearly constant velocity model was adequate to model the behavior of the ve-
hicles for these simulation studies and is therefore used in all experimental
results presented here. (Estimation performance can be improved with a mod-
erate increase in computational load using a multiple model particle filter with
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modes corresponding to nearly constant velocity, rapid acceleration, and sta-
tionarity [145].)
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Figure 4.3. A schematic showing the motion of three of the ten targets in the simulation
scenario. The target paths are indicated by the lines, and direction of travel by the arrows.
There are two instances where the target paths cross (i.e., are at the same position at the same
time). (Fig. 1 from [149] which is c©2005 IEEE - used with permission)

We use the simple scalar sensor model described in Section 2.5. The sensor
scans a fixed rectangular region of 50 × 50 pixels, where each pixel repre-
sents a 100m × 100m area on the ground plane. The sensor returns Rayleigh-
distributed measurements in each pixel, depending on the number of targets
that occupy the pixel. Unthresholded measurements return energy according
to (5.22) while thresholded measurements behave according to (5.24).

4.1 Adaptive Proposal Results

In Figure 5.4, we compare the performance of the Independent Partitions
(Table 5.3), Coupled Partitions (Table 5.4), and Adaptive Partitions (Table 5.5)
with the traditional method of sampling from the kinematic prior (Table 5.2),
in terms of RMS tracking error. In this example we use 3 targets with motion
taken from recorded ground vehicle trajectories. The targets remain close in
sensor space for about 50% of the time. Thresholded measurements with Pd =
0.5 are used and the SNR parameter λ is varied from 1 to 21. Each proposal
scheme uses 100 particles to represent the JMPD. The filter is initialized with
truth. Each point on the curve is an average of 100 runs. Table 5.8 shows the
rough computational burden of the 4 methods, obtained using the “FLOPS”
command of MatLab.
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Figure 4.4. The Performance of the Coupled Partitions (CP), Independent Partitions (IP), and
Adaptive Partitions (AP) schemes in comparison to simply using the kinematic prior. Perfor-
mance is measured in terms of RMS position error. The units in the figure are sensor cells. For
this simulation, we have extracted 3 targets from our large database of real recorded target tra-
jectories. The targets were chosen so that they spent approximately one-half of the simulation
in close proximity. The IP algorithm used alone is inappropriate during target crossings and so
performs poorly here. The CP algorithm is always appropriate, but computationally demand-
ing. The AP algorithm adaptively switches between IP and CP resulting in good performance
at reduced computation (Figure 2 from [149] which is c©2005 IEEE - used with permission).

At low SNR all of the methods provide similar tracking performance. As
SNR increases, the performance of all for methods improves (lower rms er-
ror), but CP and AP provide consistently better estimation performance. The
performance of KP is relatively low since it does not use the measurements in
the proposal. IP adversely effected due to its failure to account for the corre-
lation effects of nearby targets. The CP method makes no assumption about
the independence of the targets and therefore performs very well, but at sig-
nificantly higher computational cost. Most importantly, the adaptive method,
which uses IP on partitions that are independent and CP otherwise, performs
nearly as well as the CP method. AP achieves approximately a 50% reduction
in computational burden (measured by floating point operations) as compared
to the CP method alone.

To gain further insight into the relative performance of IP, CP and KP meth-
ods we simulate linear Gaussian target motion for five well-separated targets,
and examine the estimation performance as a function of the number of parti-
cles used in the different filters, shown in Figure 5.5. In this model problem
the Kalman filter is optimal and can therefore be used as a basis for compari-
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Table 4.8. FLOPS for KP, CP, IP, and AP Methods (Table VII from [149] which is c©2005
IEEE - used with permission)

Method Flops
Coupled Partition 1.25e+8
Independent Partition 6.74e+6
Adaptive Partition 5.48e+7
Kinematic Prior 6.32e+6

son. We use the nearly constant velocity motion model for both the simulation
of target motion and the filter. In each case, the filter is initialized with truth
and run until it achieves steady state where the mean track error is measured.
The interesting result is that IP and CP achieve the (optimum) Kalman filter
performance bound with 200 and 1000 particles respectively while KP still has
not quite met the bound with 20,000 particles. Thus even for this idealized
problem for which the Kalman filter is optimal, KP performs poorly due to the
high dimensionality of the multi-target state space.
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Figure 4.5. The performance of the CP and IP Proposal Schemes, in comparison to sampling
from the Kinematic Prior. For the purposes of this example, we consider well separated targets
with linear motion and linear state-to-measurement coupling. Therefore for the purposes of this
simple example, the Kalman filter is optimal and is shown as a performance bound (Fig. 3 from
[149] which is c©2005 IEEE - used with permission).
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4.2 Partition Swapping

Figures 5.6 and 5.7 illustrate how partition swapping occurs and how it is
reduced by using the K-means partition sorting algorithm. Partition swapping
leads to poor performance when it occurs while using the Independent Partition
proposal algorithm. Figure 5.6 shows several snapshots of the particle distrib-
ution from a crossing target example without partition sorting (the number of
particles has been reduced for illustration purposes here). Initially, the targets
are well separated and identically ordered (e.g. Time=44) and the IP method is
used for particle proposal. When the targets cross (Time=60), partition swap-
ping occurs and the CP method must be used. The targets remain in the same
detection cell for several time steps. Without partition sorting using the k-
means algorithm of Section 3.3, this swapping persists even after the targets
separated and the CP method must be used even at Time=84. This results in an
inefficient algorithm, as the CP method is more computationally demanding.
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Figure 4.6. This figure illustrates the phenomenon of partition swapping that occurs in direct
particle filter implementation of the SIR filter for JMPD. True target locations are indicated by
a solid circle. The two partitions for each particle, plotted with × and ◦, are well separated at
time 44. From time 60 to 66, they occupy the same detection cell. At time 84, some partition
swapping has occurred, indicated by the fact that there are mixtures of × and ◦ corresponding
to each target location (Fig. 10 from [149] which is c©2005 IEEE - used with permission).
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Figure 5.7 is analogous to Figure 5.6, but this time we utilize the parti-
tion sorting algorithm outlined in Section 3.3 at each time step. While the CP
method must still be used when the targets are occupying the same detection
cell, when they separate (Time=72) the IP method may be used again. The
partition sorting allows for the more computationally efficient IP method to be
used for proposal by reordering the particles appropriately.
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Figure 4.7. An example of the behavior of the particle filter based multi-target tracker during
target crossing when partition sorting is employed. The nine time sequential images focus on
one of the ten targets that the filter is tracking. The ground truth location of the target (projected
into the XY plane) is denoted by a solid circle. The partitions associated with the two targets are
denoted by× and ◦. The sensor cells are given by the gridlines. As discussed earlier, the sensor
measures on a grid and receives energy from the target density if the cell is occupied or the false
alarm density if the cell is empty. Initially (before time 50), this target is well separated from
all of the others. At these points the IP algorithm is being used for proposal. During times 50 to
66, a second target is crossing (coming within sensor resolution) of the target of interest. Near
time 72, the target complete their crossing and again move apart (Fig. 11 from [149] which is
c©2005 IEEE - used with permission).
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4.3 The Value of Not Thresholding

One of the strengths of association-free methods is its ability to use non-
thresholded measurements without modification. Intuitively, using non-thresholded
measurements should improve performance targets that are missed due to thresh-
olding might be detected without thresholding. Here we quantify the relative
performance of the tracker for a set of scenarios in which the target motion and
the underlying measurement probability density functions are identical. The
only difference is that in one case we threshold to obtain binary measurements
with distribution (5.24) while in the other case we use unthresholded measure-
ments and the envelope detected amplitude (5.22) is input into the tracker.

If one is using thresholded measurements, then the first step is to opti-
mize the threshold. For Rayleigh measurements with a given SNR, setting
the threshold is equivalent to setting the false alarm probability (see (5.23)).
To assess performance, we again use the 3-crossing target data shown of Fig-
ure 5.3. The filters are initialized with ground truth and we assess the number
of targets in track at the conclusion of the vignette. Figure 5.8 shows a contour
plot of the result as a function of Pd and SNR that increases with SNR and is
broadly peaked around Pd = 0.4.
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Figure 4.8. A contour plot showing the number of targets successfully tracked in this three
target experiment versus Pd and SNR when using thresholded measurements (Fig. 4 from [149]
which is c©2005 IEEE - used with permission).

Figure 5.9 shows the performance of the algorithm using optimized thresh-
olded measurements at Pd = 0.4 and the non-thresholded measurement al-
gorithm. We see that non-thresholded measurements provide similar tracking
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performance at an SNR of 1 as the thresholded measurements provide at an
SNR of 5, for a gain of about 7dB from not thresholding the measurements.
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Figure 4.9. A plot of the number of targets successfully tracked in the three target experiment
for thresholded measurements and unthresholded measurements as a function of SNR (Fig. 5
from [149] which is c©2005 IEEE - used with permission).

4.4 Unknown Number of Targets

The ability of the JMPD joint particle filtering algorithm to determine the
number of targets is illustrated in Figures 5.10 for the same data as in Fig-
ure 5.3. There are three targets in this simulation. We initialized the fil-
ter uniformly in target number space, allocating one-sixth the probability to
0, 1, · · · , 5 targets. Over time, the filter is able to accurately estimate the num-
ber of targets in the surveillance region. As the SNR improves, the time until
correctly determining the number of targets decreases.

5. Conclusions

There is a need to develop sensor management techniques that are applicable
across a broad range of Intelligence, Surveillance and Reconnaissance assets.
A critical component to sensor management is the accurate approximation of
the joint posterior density of the targets, i.e., the belief state. The belief state is
captured by the Joint Multitarget Probability Density and it quantifies the effect
of uncertainty within the scene and permits the use of information-based meth-
ods to quantify this uncertainty and select most informative sensing actions.
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Figure 4.10. The estimate of number of targets in the surveillance region versus time with
SNR=4. The filter is initialized with probability uniform for 0, 1, · · · , 5 targets. Measurements
taken over time allow the filter to properly estimate the number of targets in the surveillance
area (Fig. 6 from [149] which is c©2005 IEEE - used with permission).

The need to treat nonlinear target motion and target birth and death motivates
the use of nonlinear techniques such as particle filtering. The inherent permu-
tation invariance of the JMPD must be treated properly in developing proposal
methods for the particle filter, leading to the IP, CP, AP and OID methods
described in the chapter. These can be implemented with a moderate compu-
tational cost and can provide order-of-magnitude reductions in the amount of
sensor resource required to achieve a given level of tracker performance. A
side benefit is that these nonlinear methods lead naturally to association free-
trackers that can make use of unthresholded measurements, providing further
improvement and effectively increasing the target SCNR by 3-5 dB.

The future directions for this work include expanding the information based
sensor scheduling to long term planning discussed elsewhere in this volume
(Chapters 3, 7). Another area requiring further work is in optimizing proposals
during the track initiation phase as the work reported here focuses on optimiz-
ing proposals for firm tracks. The studies presented here have been performed
in the context of air- and space-based sensors tracking ground moving targets.
These results are readily extendable to other domains such as missile defense
or tracking air targets.

In the next Chapter the joint particle filtering methods introduced here will
be applied to several sensor management scenarios.


