Characterizing Dynamic Graphs with
Continuous-time Random Walks

ABSTRACT

Dynamic networks pervade many aspects of our lives and
provide a growing and rich set of services in commerce, gov-
ernment, communications, and connectedness. In this work
we consider network graphs whose edges but not nodes vary
over time. Some examples of such networks include mobile
wireless networks and delay tolerant networks. Character-
izing and measuring “fast” changing networks is challeng-
ing as traditional techniques devised for static networks are
rendered unsuitable. In this work we study the application
of continuous-time random walks (CTRW) to characterize
Markov dynamic graphs. In this dynamic graph model,
a fixed set of static graphs are modulated according to a
Markovian process. We consider a CTRW that progresses at
a fixed rate and another that progresses with a rate propor-
tional to the vertex degree. We derive closed-form analytical
results for the steady state distribution of these walkers and
show that their behavior is strikingly different. We then ap-
ply CTRW to two problems: (1) estimating vertex and edge
characteristics, and (2) spatiotemporal node clustering. The
later is a fundamental problem as nodes should be clustered
according to their connectivity is both space and time. Fi-
nally, we evaluate our methods on synthetic dynamic graphs
as well as real world traces.

1. INTRODUCTION

There has been a rapid increase in the number and types
of digital networks over the last decade beginning with the
Internet, its constituent networks, and the World Wide Web,
and with the addition of on-line social networks such as Face-
book, Twitter, etc., and mobile wireless networks (MANETS)
delay tolerant networks (DTNs), and online information net-
works (CDNs, P2P file sharing, Wikipedia). These networks
pervade many aspects of our lives and provide a growing and
rich set of services in commerce, government, communica-
tions, and connectedness.

These networks can be in a dynamic state of flux and
differ from infrastructure networks such as the Internet in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

This work is under review.

Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

that they are both large and dynamic even over small time
intervals. Analyzing and measuring such “fast” changing
networks are challenging, due to their dynamism and size.
For example, the topologies of MANETs and DTNs are con-
stantly changing, and that of an OSN such as Facebook
and online knowledge networks (CDNs, P2P, Wikipedia) is
rapidly growing and evolving with users and information
coming and going. As a consequence, traditional techniques
designed for static networks are rendered unsuitable.

Dynamic networks are commonly represented by graphs
that change over time. Graph dynamics fall into two classes.
The first class includes graphs that grow over time with the
addition of nodes and edges (and infrequent node and/or
edge deletions). Such dynamic graphs capture the evolution
of the Internet over time and the growth of online social net-
works such as Facebook. Examples of models that attempt
to capture this dynamic include linear preferential attach-
ment [6]. The second class includes graphs that change but
do not grow over time. A particular class, which is our focus,
includes graphs whose edges but not nodes vary over time.
Such a graph models the behavior of mobile networks and
DTNs over time. Other examples include email graphs and
network traffic graphs. It is worth noting that our focus is
not on modeling dynamic networks, a topic that is in its in-
fancy [7, 15, 19, 37], but rather to study how to characterize
and measure such networks.

Random walks on static graphs.

Static networks have been thoroughly studied in the liter-
ature. A rich variety of structural properties have been pro-
posed and measured on real-world networks including degree
distribution, assortativity, centrality, and clustering. Ran-
dom walks (RWs) have an important role in understanding
and characterizing these metrics. A RW can be described
as a walker that at each step chooses uniformly at random a
neighbor from the set of neighbors. RWs have proven useful
for identifying “central nodes” [32], searching for content [8,
17,18, 25, 21, 41], clustering nodes [4, 23, 24, 27, 31, 33|, and
characterizing unknown graphs [16, 26, 35, 36]. The simple
closed form solution of the distribution of the number of vis-
its a stationary RW pays to a node (which is proportional
to the node degree) is the basis of principled RW applica-
tions in sampling and clustering static graphs [24, 36] (more
details can be found in Sections 3 and 4). In contrast, little
is known about random walks on dynamic continuous-time-
varying networks and their applications.

Contibutions.

As RWs have been shown to be invaluable in understand-

ing and characterizing static graphs, we believe that continuous-

time random walks (CTRW) can have a similar role in char-
acterizing dynamic graphs, a belief reinforced by the promis-
ing results presented in this work. The choice of a CTRW is
a natural one as the graph dynamics require a walker that
also has a continuous time component. In this context, the
main contributions of this work are as follows.

e We model and analyze a continuous time random walk
(CTRW) on a dynamic Markov modulated time vary-
ing graph. We consider two walks, one where the
walker progresses at a steady rate (CTRW) and a sec-
ond where the rate is proportional to the degree of the
node currently being visited (CTRW-D).

e In the case of a fixed rate CTRW, we observe that
the steady state distribution depends on the walker
rate. By considering this process as nearly-completely
decomposable, we characterize the stationary distri-
bution in the extremes where the walker rate is large
enough (i.e., the walker is much faster than the graph
dynamics) and where the rate is small enough (i.e., the
walker is much slower than the graph dynamics).

e In the case of the degree dependent walker rate CTRW-
D, we obtain the stationary state distribution in closed
form and find that it is insensitive to the base walker
rate, graph dynamics and graph structure. This promis-
ing result enables the design of principled mechanisms
to characterize dynamic graphs.

e We present two applications of CTRW-D:

Sampling: estimate simple graph characteristics such
as the fraction of blue and red nodes in a colored graph
and the fraction of time that a given edge exists.
Clustering: A dynamic graph clustering algorithm
must classify nodes not only according to their spa-
tial separation (how they are connected on each snap-
shot of the dynamic graph) but also on how well they
are connected in time. We propose a principled tech-
nique to uncover spatiotemporal clusters, which clus-
ters nodes defined in space and time.

Outline.

The remainder of this paper is organized as follows. In
Section 2 we present the Markov dynamic graph models
and continuous-time random walks. In Section 3 we eval-
uate the steady state behavior of the CTRW and CTRW-D
on Markov dynamic graphs. In Section 4 we define how
CTRW-D yields a principled mechanism for clustering dy-
namic graphs. Section 5 presents some results related to
sampling and clustering. Section 6 describes the related
work and finally Section 7 presents a discussion and the
conclusion.

2. DYNAMIC GRAPHS & RANDOM WALKS

In this section we describe a class of Markov dynamic
graph models and random walks. The dynamic graph mod-
els we consider assume that nodes are always present but
that edges can come and go over time. Random walks on
these graphs behave as follows. When a walker takes a step,

only incident edges that are present at that time are consid-
ered as possible alternatives. We next describe these models
in detail.

2.1 Markov dynamic graphs

A Markov dynamic graph is a set of graphs having the
same vertex set and a Markov process over them. In partic-
ular, let S = {G1, ..., Gm} be a set of undirected graphs all
having the same vertex set V', thus, G = (V, Ex), where Ej,
denotes the set of edges of graph Gi, for k =1,...,m. Let
n = |V| denote the number of vertices in a graph. Moreover,
let Aj denote the adjacency matrix of graph Gx. Thus, for
all 3,7 € V, Ag(i,5) = 1 if (4,5) € Ex and 0 otherwise. Fi-
nally, let deg(i, k) denote the degree of vertex ¢ € V' in graph
Gr.

We introduce the dynamic graph process {G(¢)} as a con-
tinuous-time stationary Markov process with state space S.
Let Axi > 0 denote the transition rate from state (graph) Gy,
to G;. Note that the graph dynamics are fully determined
by the transition rates.

2.2 Edge Markov graphs

A special class of Markov dynamic graph are edge Markov
graphs G = (V, E, A), where V and E are the set of vertices
and edges of the graph, respectively, and A a function over
the edges. In edge Markov graphs, edges alternate between
being present and absent from the graph according to inde-
pendent on-off processes. Let Ag(e) and Ai(e) denote the
rate at which edge e € E changes from the on state to the
off state and from the off state to the on state, respectively.
Note that these rates can be edge dependent.

A few observations on the model follows. Let ¢g. denote
the steady state fraction of time that edge e € E is on,
which is simply given by gc = A1(e)/(Ao(e) + A1(e)). Let
Gk, be a particular configuration of the graph. In particular,
G = (V, E}) is a graph with the same vertex set V' where a
subset of edges are present, F, C E. In particular, the edge
Markov graph induces a total of 2!Z! configurations, which
represent all possible labelled subgraphs over an edge set
with |E| edges. Finally, let P(Gi) denote the steady state
fraction of time that the edge Markovian model spends in
configuration Gy, with k& = 1,...,2/"l. In particular, we

have that
PG =le J] -4 (1)

ecEy, e€E\Ey

We note that edge Markov graphs are a special type of
Markov dynamic graphs, where the set of S of graphs corre-
spond to the set of all configurations and transitions among
configurations can be determined from the on-off process of
the edges. In the remainder, we focus on the more general
Markov dynamic graph.

2.3 Random walks on dynamic graphs

We consider a continuous time random walk (CTRW) on
a general Markov dynamic graph. Intuitively, the walker can
only traverse edges that are incident to the vertex at which
the walker resides, choosing uniformly at random among
them. Let {W(t)} be the continuous time process represent-
ing the vertex where the walker resides, thus W(t) =i € V,
for any t. The time between two consecutive steps of the
random walk is exponentially distributed with rate v. We
refer to v as the walking rate.

Figure 1: Example of a simple Markov dynamic
graph.

Without loss of generality, assume that when the random
walk takes a step at time ¢, the Markov dynamic graph pro-
cess is in state G, that is G(t) = Gj, and that W (t) = 7. Let
N i denote the set of neighbors of vertex ¢ in the graph Gi.
Thus, the probability the walker steps to vertex j € N; i is
given by 1/|N; x|. Finally, if N; is empty, the walker stays
at vertex ¢ during that step.

2.4 Joint graph and walker dynamics

The dynamic graph process and the random walk pro-
cess can be represented as a continuous-time Markov pro-
cess {R(t)} where R(t) € V x S. Let s; i represent a state
of this process where ¢ represents a vertex of V (i € V) and
k represents a graph in S (k € [1,...,m]). We call s;x a
spatio-temporal node (SThode). Let U = {s; 1 : Vi € V,k =
1,...,m} denote the set of all STnodes. The infinitesimal
generator matrix of {R(t)} is determined by combining the
graph dynamics with the random walk, as we next describe.

Let Qr denote the infinitesimal generator matrix for the
random walk dynamics conditioned on graph Gi. We have:

Qe =YD ' Ax — 1, (2)

where Ay is the adjacency matrix of Gi, Dy is a diagonal
matrix with the vertex degrees of Gy, M~ is the inverse of
matrix M, and [is the identity matrix with dimension n.
The infinitesimal generator matrix of @ of the joint process
{R(t)} is given by:

Qr—MI| ... Atml
Q=) 3)
Amil v | Qm — Al

where A\, = Zl Akt which denotes the aggregate rate out of
graph Gj.

We illustrate this construction using a simple example.
Consider the dynamic graph model shown in Figure 1 with
two graphs G1 and G2 and transition rates A2 and A21
between them. The infinitesimal generator matrix @ in this
case is given by:

Qi — A2l | A2l
= 4
@ Al | Q2 —Aail)

2.5 Block matrix representation of Q

The construction of matrix @ shown in eq. (4) induces
the following intuitive partition of the matrix. Let P =
{P",..., Py} beapartition of the state space U, where each
subset P’ consists of all random walk states corresponding
to the graph G. In particular, P’ = {s;k|i € V}. Thus,

walker
dynamics

graph
dynamics

walker
dynamics

graph
dynamics

walker
walker dynamics graph
dynamics dynamics

(a) (b)

graph
dynamics

Figure 2: Two different matrix arrangements for
CTRW on Markov dynamic graphs.

each partition corresponds to a square matrix block of size
n = |V] in the matrix arrangement described above. More-
over, transitions within a partition correspond to random
walk dynamics and transitions among blocks correspond to
graph dynamics, as illustrated in Figure 2(a). Finally, note
that transitions among blocks depend only on the transition
rates associated with the graph dynamics (i.e., Ax;), but not
5.
We consider a second (also intuitive) partition of) where
states s;, € U are sorted first by ¢ and then by k. We
denote this second partition as P? = {P{,..., P}, where
each subset P consists of all graph states corresponding to
vertex i. In particular, P{ = {s; x|k € [1,...,m]}. Thus,
each partition corresponds to a square matrix block of size m
(number of different graphs). Thus, within a block we have
the graph dynamics and transitions among blocks represent
the walker dynamics, as illustrated in Figure 2(b). Finally,
note that transitions between blocks depend solely on ~, but
not on \g; for any k, 1.

Considering the first arrangement, we present a more gen-
eral procedure than simply aggregating individual graphs
for the case where the graphs G do not consist of a single
connected component. In this case, each graph G consists
of one or more connected components. When considering
a graph Gy, states are arranged contiguously according to
their connected component. Thus, each connected compo-
nent of a graph Gy, is represented by a block. In this matrix
representation, each block represents a connected compo-
nent of a graph.

Remark: One example where the second partition is in-
tuitively evident consists of the edge Markov graphs, intro-
duced above. In this case, the partition blocks are formed by
the Kronecker product of two state on-off blocks (one block
for each on-off edge) given that the edge dynamics are inde-
pendent of each other. Clearly, edge Markov graphs give rise
to very special matrix @) structures that can be exploited.

2.6 Degree-dependent random walks

The random walker considered above walks at a constant
rate v over the dynamics graph. We now introduce a vari-
ation where the walking rate is not constant, but instead
depends on the degree of the vertex where the walker is lo-
cated. Intuitively, our walker will move faster when it finds
itself at vertices with large degrees and slower when located
at vertices with small degrees. More precisely, the inter-step
time of the random walk is exponentially distributed with
rate deg(i, k), where deg(i, k) is the degree of vertexi € V
in graph Gy € S and v > 0. Note that each state s;, € U

of the joint process will now have a possibly different transi-
tion rate for the walker. We will refer to this random walk as
CTRW-D, where “D” stands for degree-proportional walk-
ing rates.

Similar to the CTRW, the infinitesimal generator of the
joint graph and walker process {R(t)} for the CTRW-D can
also be constructed by combining their individual dynamics.
For the general case, where we have m distinct graphs Gy,
the infinitesimal generator matrix is given by:

’yAl - ’yDl -)\1] P)\lml
Q= : : :
Ami1l coo YAm —ADp — A I

where [is an n X n identity matrix, A = Zz Aki, Ak is the
adjacency matrix of graph G, and Dy, is a diagonal matrix
with the degrees of G (row sum of Ax), k=1,...,m.

Note that the arrangement of the matrix above corre-
sponds to blocks that represent the walker dynamics, as
illustrated in Figure 2(a). As with CTRW, all transitions
that depend on 7 occur within a block, while transitions
between blocks depend only on Ag;.

Finally, as we describe in the next section, CTRW and
CTRW-D behave very differently when walking on dynamics
graphs, even when considering steady state characteristics.

3. STEADY STATE DISTRIBUTIONS

In this section we investigate the steady state distribu-
tion of continuous-time random walks on dynamic graphs.
We first consider CTRW with constant rate and show that
the steady state distribution depends on the walker rate.
We follow with the analysis of CTWR-D and show that its
steady state distribution is uniform, independent of base
walker rate, graph dynamics and graph structure.

3.1 Existence of steady state

The {R(t)} process defined by the joint graph and walker
dynamics described in the previous section may not be er-
godic. In particular, the Markov dynamic graph model does
not impose any structural restrictions on the static graphs.
Therefore, steady state for random walks on these graphs
may simply not exist. For example, if all graphs are not
connected and is never possible to go from one vertex ¢ € V'
to some other vertex j € V over time.

In order to characterize the existence of steady state, we
introduce the notion of paths in both space and time as
follows.

DEFINITION 3.1. STpath. A spatiotemporal path (or STpath)

between SThodes s;, € U and sj; € U exists if the commute
time of a CTRW between them is finite. The commute time
is the expected time for a random walk starting at i in static
graph Gy to first arrive at j at static graph G; and then
return to i in static graph Gj.

Note that STpaths can exists between vertices that are not
part of the same connected component in some given graph.

Finally, it can be shown that if an STpath exists between
any pair of STnodes s; 1 and s;; defined by the joint graph
and walker dynamics, then process {R(t)} is ergodic and
therefore the random walk will have a steady state distribu-
tion.

In edge Markov graphs G = (V, E, A), if the graph G =

0.4 —_—
Walker rate 0.01 Rxxzxi
0.35 Walker rate 0.1 msses
Walker rate 1 m—
[0.3 r Walker rate 10 ¢]
.é 025 | Walker rate 100 ¢
S
c 0.2 r
k=]
g 0.15 +
= 01 |
0.05
0 -+ el Teh L =
1 2 3 4 5 6 7 8 9
Vertex
Figure 3: Steady state distribution of random

walker as a function of ~.

(V, E) is connected, then the process { R(¢)} is ergodic, oth-
erwise the process is not ergodic.

3.2 CTRW steady state distribution

We are interested in the fraction of time that the random
walk spends at each vertex ¢ € V regardless of the graph
dynamics. Clearly, this metric can be obtained from the
steady state probability distribution of {R(t)}. Let m(si)
denote the fraction of time in STnode s;,, where i € V and
k € [1,...,m]. In particular, assuming ergodicity in {R(¢)},
we have 7(s;x) = lim;,00 P[R(t) = si,%x]. We denote vector
m = (71,...,my) in which the i-th component is the fraction
of time the random walk spends in vertice ¢ of set V', where
n = |V|. Therefore, mi = Y, m(six). In what follows we
investigate 7, starting with a simple numerical example, and
following with more general results.

Consider the Markov dynamic graph illustrated in Fig-
ure 1 where A2 = A21 = 1. Figure 3 presents the steady
state distribution of the random walker for various values
of 7. As the walking rate increases from 1072 to 10% we
observe significant change in 7. In particular, the steady
state probability of state 2 reduces by more than 50% while
that of state 5 increases by more than 50%. Thus, the ran-
dom walk depends on the temporal structure of the dynamic
graph and this dependency varies with the walker rate. Lets
intuitively discuss the two extremes where «y is sufficiently
large and sufficiently small.

Consider a very fast walker, in particular, much faster
than the timescale at which the graphs change. Thus, ev-
ery time a graph is entered, the random walk quickly steps
through all vertices in this graph, many times. Intuitively,
the random walk converges to the steady state distribution
of the static graph before the dynamic graph process changes
to a new graph. In this scenario, the steady state distribu-
tion of the random walk is given by the unconditional steady
state probability of each static graph.

Now consider a very slow walker, in particular, much
slower than the timescale at which the graphs change. Ev-
ery time the walker steps onto a vertex, the incident edges
of this vertex change many times before the walkers steps
off. Intuitively, when the walker steps off it will observe the
incident edges in steady state. Thus, the probability the
walker steps from vertex i to vertex j is given by the steady
state probability that edge (i,7) is present weighted by the
probability that the walker chooses this edge. The steady

state distribution of the random walk is the solution of this
new process on a weighted static graph. The intuition be-
hind fast and slow walkers are formalized in the theorems of
the next subsection.

3.2.1 Block decomposition

In this section we show how the steady state distribu-
tion of CTRW can be obtained through aggregation/dis-
aggregation theory of Markov chains using block decomposi-
tion. We wish to explore how we might be able to determine
the equilibrium state probabilities without having to solve
the original (large) CTRW model. For that purpose, we first
briefly review basic results on aggregation/disaggregation
theory, that will form the basis for the calculations. In or-
der to facilitate the explanation on aggregation we consider
a discrete-time Markov chain. However, from uniformiza-
tion results, it is well known that we can indistinguishably
work with either the continuous-time or discrete-time ver-
sions [13].

Consider a discrete-time MC and partition the state space
into S subsets Si,...,Ss. Let w} be the conditioned state
probability vector for the states in subset S; and define «
as the vector in which the i-th entry is the fraction of time
the MC is in subset &;. Then:

N
o = Z%‘W;Pjiev (5)
j=1

where P;; is the matrix that includes the transition proba-
bilities from states in subset S; to those in ;. It is known
that if we define 0j; = 7} Pj;e we can re-write (5) as

a = a0 (6)

where O is an stochastic matrix with (i.7)-th entry equal to
0ij. The state probabilities m; can be obtained from

TG :Oéiﬂ':. (7)

From above it is clear that, once we obtain the conditional
state probabilities 7] for each partition S;, we can easily
obtain the unconditional state probabilities for the MC. The
issue then is how to efficiently obtain the 7.

We obtain the 7} ’s from the stochastic complement for the
partition S;. The stochastic complement C; for partition S;
is an stochastic matrix:

Ci=Pi+» Py[l-P;] P, (3)

J

In (8), the ij-th entry of [— P;;]”" can be interpreted as
the expected number of visits to state j € S; before leaving
S;, if §; was entered from state .

The stationary state probabilities for the stochastic com-
plement are the conditional state probabilities for the asso-
ciated states of the original Markov chain and we have:

w; =m C; (9)

3.2.2 Limiting results

Although equations (8) and (9) provides an exact proce-
dure to calculate the 7}’s, the calculations may not be effi-
cient unless the model has a special structure. One such spe-
cial structure constitute the nearly completely decomposable
systems (NCD). In an NCD system, the off diagonal blocks

probabilities (the probabilities of moving from a state to an-
other in different partitions) are relatively small as compared
to those within each blocks. (Similarly, in an NCD system,
the transition rates between states in different partitions are
much smaller as compared to the rate of events that are re-
sponsible for jumping from one state to another in the same
partition.) This suggests that each time the system enters
subset S; it stays there long enough for the system to have
reached a local equilibrium and the exact state at which S;
was entered has little effect on the w;. In order words, if
the sojourn time in S; is long enough so that the effect of
the transient behavior in subset S; has vanish, then the ex-
pected number of visits in a state of S; becomes independent
of which state S; was entered. Courtois [12] formalizes these
arguments. In what follows, we apply these results to the
state probabilities of a CTRW for some special cases.

Let us first assume that the random walker rate is much
faster as compared to the rates of graphs G, changes. For a
sufficiently large 7, the state state probabilities of the ran-
dom walk 7 is a linear combination of the corresponding
probabilities of each individual static graph Gj.

THEOREM 3.1. For a sufficiently large -y, the steady state
distribution w of the random walk is given as follows. Let
m(Gr) = (71(Gk), ..., ™ (Gk)) denote the steady state dis-
tribution of a random walk on the static graph Gy. In partic-
ular, assuming that Gy, is connected, we have that m;(Gy) =
deg(i, k)/ Zj deg(j, k) fori=1,...n and deg(i, k) denotes
the degree of node i in graph Gy. Let 11 denote the steady
state fraction of time spent in graph Gy. We then have that:

™= ZHMT(Gk) (10)
k=1

Proor. It follows trivially from the discussion above. We
partition the state space as in Figure 2(a). Each partition
corresponds to a given graph Gj. Since the random walker
walks fast enough, the system is NCD and we can distributed
the outgoing rates of each block in Figure 2(a) into the di-
agonal of each block. The = are then obtained from the
solution of the static graph G; (the w(G%x) in (10)). The
a’s (IIj, in (10)) are obtained from (6) and the final solution
follows from (7)*. O

We now assume that the random walker rate is much
slower than the rates of graph changes. For a sufficiently
small v, the state probabilities of the random walk 7 is ob-
tained from the solution of a MC that govern the changes
between graphs.

THEOREM 3.2. For a sufficiently small~y, the steady state
distribution m of the random walk is given by the steady state
distribution of the following continuous time Markov chain
with n states corresponding to the vertex set. Let R denote
the rate matrix of this continuous time Markov chain and
ri,; an element of R with i different from j. Define:

rig =7y 1((i,5) € Bx) T 1/ deg(i, k) (11)
k=1

where 1(-) is the indicator function and deg(i, k) is the de-
gree of vertex i in graph Gy,.

'Note that the rate of moving from G; to Gy, is dependent on
the particular node the walker is at the time of the move.
This is why we need the conditional probabilities in each
partition.

Figure 4: The fixed but weighted graph seen by the
slow walker on the example of Figurel. All edges
have weight 0.5 with the execption of edge (1,2)
which has weight one.

Proor. It follows from exactly the same principles as in
Theorem 3.1 after partitioning the state space as in Fig-
ure 2(b). Each partition represents the dynamics of edge
changes and the MC is NCD. Block i, corresponding to par-
tition S;, represents a particular node in the graph. Since
the edge dynamics are independent of the particular node
the waker is in, and v is relatively small, then the condi-
tional state probabilities are easily obtained by distributing
the walker rates into the diagonal of each block. For in-
stance, if the edge dynamics are modeled by independent
on-off processes, then it is trivial to compute the condi-
tional state probabilities for states in any partition. Like-
wise, for a general dynamic graph process, the conditional
state probabilities will be given by the solution of the MC
that represents the changes in the graphs with time. Once
we obtain the conditional probabilities for the states in each
partition, equations (6) and (7) are used to obtain the final
solution. [

Remarks: From Simon-Ando theorems [39], the solu-
tions outlined above can always meet a given level of accu-
racy for sufficiently large (or small) value of . For interme-
diate values of v the MC of the system is not NCD. However,
one can resort on the special structure of the problem to ob-
tain a solution efficiently from aggregation theory. We defer
a discussion of these issues to a subsequent report, since our
main focus in this paper is to show properties of dynamic
graphs and, for this purpose, the above results suffice.

Returning to our example, consider the fast walker. Re-
call that the steady state distribution of a CTRW in a con-
nected static graph Gy, is independent of the walker rate and
is simply given by m; = deg(i, k)/ Zj deg(j, k). Moreover,
the fraction of time the process spends in each static graph
is 0.5, since A12 = A21 = 1. Thus, the steady state proba-
bility of state ¢ is simply given by m; = 1/2(deg(i,1)/16 +
deg(,2)/16), which for state 2 is 3/32 (as can be confirmed
in Figure 3).

As for the slow walker, Figure 4 shows the static but
weighted graph over which the random walk will traverse.
Recall that edges are not chosen uniformly at random, but
instead proportional to the fraction of time they are present.
In this example, all edges in the figure have weight 0.5 which
correspond to the fraction of time they are present, with
the exception of edge (1,2) which has weight one, since it
is present all the time. The steady state distribution of this
process is very close to that of a slow walker shown in Fig-
ure 3.

0.1125

"Walker rate 0.01 &3
Walker rate 0.1 sz

0112 ¢ Walker rate 1 m— |
Walker rate 10 ¢
0.1115 r Walker rate 100 ¢

0.111

Fraction of time

1 2 3 45 6 7 8 9
Vertex

Figure 5: As predicted by Theorem 3.3, a CTRW-
D in steady state spends an equal amount of time
on each vertex, regardless of the walker rate (v),
graph dynamics or structure of the each snapshot,
Gk, k':].,...,m.

3.3 CTRW-D steady state distribution

As before, we are interested in the fraction of time that the
random walk spends at each vertex disregarding the graph
dynamics. We start by considering the example presented
above (illustrated in Figure 1), but with a CTRW-D walker.
Figure 5 shows the steady state distribution for various base
walker rates 7. Different from CTRW (compare with Figure
3), we observe no variation in 7 as the walker rate changes.
Moreover, the walker spends a fraction of time that is uni-
form across the vertices of the graph (the example has 9
vertices, which yields a fraction of time of 1/9 = 0.111).
This observation is quite remarkable, since it means we can
traverse the graph at arbitrary speeds, irrespective of graph
dynamics, while being able to characterize the steady state
distribution that the walker will observe. In what follows,
we prove this observation for all CTRW-D.

We start by noting that the steady state distribution of
CTRW-D on static graphs G}, is uniform over the set of ver-
tices. Moreover, this result is also independent of ~y, the
walking rate. Intuitively, CTRW-D compensates the struc-
tural bias suffered by CTRW on by introducing a temporal
bias. With CTRW-D, at the same time high degree nodes
are more visited, less time is spent in them (higher walking
rate). We can make this argument rigorous as follows.

Consider a connected graph G, k = 1,...,m and a CTRW-
D walker. Let v; denote the fraction of visits to vertex: € V'
in steady state. Since fraction of visits is independent of time
in a vertex, we have that v; = deg(i)/zj deg(j), where
deg(i) denotes the degree of vertex i € V. Let ¢; denote the
expected amount of time in vertex ¢ per visit, which is sim-
ply given by ¢; = 1/(ydeg(¢)). Finally, the fraction of time
spent in vertex 4 is given by m; = (vztl)/(zj vit;) = 1/n,
where n = |V|. Thus, CTRW-D in static graphs exhibit a
uniform distribution over the set of vertices.

Interestingly, this same result follows for Markov dynamic
graphs, as we show next. As before, let 7(s;) denote the
fraction of time a CTRW-D in steady state spends at STnode
si.k € U. If the steady state distribution 7' = (7(s;x) :
Vsir € U) exists, it satisfies the set of equations 7'@Q = 0.
In the following theorem we see that if the Markov dynamic
graph is ergodic, then 7(s;x) is the product of an uniform
distribution over the vertices, 1/n, with the fraction of time

that the Markov dynamic graph spends in graph Gy.

THEOREM 3.3. If the Markov dynamic graph is ergodic
w(sik) =g/, i€V, k=1,...,m, where Iy is the steady
state fraction of time that the Markov dynamic graph spends

PROOF. Let 7' = (1, ..., 7y), where m(;, .0, = cx/n,
i=1,...,nand k =1,...,m. We just need to find the val-
ues of ¢k, k = 1,...,m, that solve 7’/Q = 0. Note that
(ck/ny...,cu/n)(Ary — Diy) = 0, Ve > 0, as Ay is sym-
metric. Thus, 7'Q yields the set of equations:

—Arcr + ZAhkch:O, k=1,...,m. (12)

Vhitk
The Markov chain describing the dynamic graph is ergodic
and thus ¢, = Il is a solution to equations (12), k =
1,...,m. O

From the above result, we directly obtain the fraction of
time CTRW-D spends in each vertex i by simply summing
over all k. Thus, m; =), Iy /n = 1/n. Thus, the CTRW-D
in steady state experiences a uniform distribution over the
set of vertices V.

4. SPATIOTEMPORAL CLUSTERING

In this section we propose an algorithm to perform clus-
tering in dynamic graphs (spatiotemporal clustering). Sec-
tion 4.1 introduces a well known and widely used RW-based
clustering methods for static graphs. Then, in Section 4.2 we
use the same formalism introduced in Section 4.1 to develop
our spatiotemporal clustering method. Later in Section 5
we present two examples of applications.

4.1 Spatial (static graph) clustering

Spectral clustering techniques on static graphs have re-
cently received considerable attention. A variety of spec-
tral clustering methods can be found in the literature [24].
Random walk-based clustering [38] (a type of normalized
graph Laplacian) is one of the most popular methods due to
its nice theoretic properties and good performance on real
world applications [24]. A justification to use random walks
in graph partitioning can be found in a graph theoretic met-
ric. We want to partition the graph into clusters (subsets)
of nodes such that there are few edges between different
clusters and many edges within clusters. In what follows
we present an overview of this theoretical justification. Our
primary goal here is not to present a tutorial on spectral
clustering; a detailed explanation of the methods and their
theoretic foundations can be found in [24]. Our interest is
to use the following descriptions to guide us in developing a
spatiotemporal clustering technique.

Let G = (V, E) be a static, connected, non bipartite, undi-
rected, unweighted graph with n nodes. It is trivial to ex-
tend the following formulas to weighted graphs [24]. Let
B CV and B = V\B. Let §(B, B) be the number of edges
between nodes in B and B, i.e., the number of edges that
have an endpoint in B and another endpoint in B. The
normalized cut (Ncut) of B is given by

4(B, B)
Ncut(B) = vol(B) (13)
The minimum Ncut problem consists of choosing a parti-
tion of V into disjoint non-empty subsets By, ..., By that

minimizes
k
Neut(Bi, ..., By) = Y _ Neut(B;) (14)
i=1

where vol(B;) = ZWGBi d, and d, is the degree of node
v. The minimum Ncut can be approximated using the spec-
tral decomposition of a RW on G. In order to facilitate our
transition to the dynamic graph case, our exposition uses
CTRWs instead of simple discrete-time RWs. Let’s look at a
CTRW at the times in which the walker takes a step (thus,
it is immaterial to us if we are looking at a CTRW-C or
CTRW-D) {X;}ien, where ¢ is the i-th walker transition,
given that the system starts in steady state according to
distribution 1. Denote P(B|B) = P(X; € B|Xo € B). A
formal equivalence between Ncut and transition probabili-
ties of the above random walk has been observed in [28]:

Necut(B, B) = P(B|B) + P(B|B). (15)

Thus, minimizing Ncut(Bu,..., Bx), eq.(14), is equivalent
to finding disjoint non-empty partitions of V., Bi,..., B,
that, in steady state, minimize the number of transitions
that a RW makes between these partitions. We will revisit
this equivalence in Section 4.2 when we look at spatiotem-
poral clustering. Note that the above clustering formulation
is closely related to the block decompositions performed in
Section 3.2.1, where our objective was to find blocks of states
(nodes) in the Markov chain (graph) where more RW tran-
sitions are performed within the block (cluster) than outside
the block (cluster).

In what follows we present a short description of the clus-
tering technique proposed by [38]. Let A = [ai], i, =
1,...,n denote the adjacency matrix of G. Let D = diag(d;),
i=1,...,n, beadiagonal matrix with the degrees d1, ..., d,
of the graph. Consider the infinitesimal generator matrix of
a CTRW-D on G

Q.=A-D. (16)

Now consider the transition probability matrix of its corre-
sponding embedded Markov chain at the transition points
of the CTRW-D,

P, = —diag(Q}) ' Q% + I,

where diag(M) is a matrix with the diagonal elements of M.
Note that the diagonal elements of A are zero and, thus,
diag(Q%) = —D. Let Psu; = aju;, where u; is the eigenvec-
tor of Q' corresponding to the i-th largest eigenvalue a; of
Ps. As

(—diag(Q;)lefg + DNu; = —diag(Q;)le;ui +u;y, Vi,

the i-th largest eigenvalue of —diag(Q,)™'Q% is a; — 1 and
its corresponding eigenvector is u;. Note that the largest
eigenvalue is oy = 1 and its corresponding eigenvector is
u1 = v (recall that v is the stationary distribution of the
number of visits of the CTRW-D). The spectral decompo-
sition used in [38] is in fact the spectral decomposition of
—diaug(Q's)_lQ’S but, as we see below, we can instead use
the spectral decomposition of P; without changing the al-
gorithm.

The rest of the algorithm in [38] is as follows. Let U €
R™** be the matrix containing the k first eigenvectors of
P, as columns. For i = 1,...,n, let y; € R¥ be the vec-
tor corresponding to the i-th row of U. We cluster the

points {yi}i=1,..n € R* into k subsets, C1,...,Ck, using
k-means [38]. The k clusters are B; = {j € Vl|y; € Ci},

i = 1,...,k. The use of k-means to determine the clus-
ters also has a justification: the Euclidean distance between
points y;, i = 1,...,k, is closely related to a “random walk

diffusion-based distance” metric [30].

Figure 6: A graph with two trivial clusters: {a,b,c,d}
and {67 f7 g7 h}

Note that the above algorithm requires the number of clus-
ters, k, to be known ahead of time. A simple way to obtain
k from the data uses the notion of a spectral gap [24, Sec-
tion 8.3]. The principle behind this idea is to choose k such
that ai,...,ar are relatively large but ajyi is relatively
small. A justification for this procedure is based on the
decomposition principles introduced in Section 2.5 (based
on perturbation theory, see [24, Section 7.1] for more de-
tails). In the ideal case of k completely disconnected clusters
ap = -+ = ax = 1 with a gap to the (k + 1)-th eigenvalue
ar+1 < 1. Consider the static graph shown in Figure 6.
For the sake of simplicity we relax our assumption that G
is connected and allow subgraphs {a, b, c,d} and {e, f, g, h}
to be disconnected. Arrange the adjacency matrix of G in
lexicographical order, i.e., the first row (column) represents
a and the last row (column) represents h. Note that Ps has
a trivial block decomposition

[

and the spectral decomposition of Ps shows eigenvectors u
and uz to be (up to a constant multiplier)

[0.59 T 0
0.39 0
0.59 0

u; = 0.39 and Uy = 0

0 0.59 |’
0 0.39
0 0.59

| 0] | 0.39 |

respectively. Both u; and w2 display two clear clusters; the
elements in uq associated with {a, b, ¢,d} are non-zero while
its elements associated with {e, f, g, h} are all zero; us is the
opposite.

In the above we reviewed a random walk-based technique
to cluster static graphs. In what follows we extend the above
ideas to dynamic graphs.

4.2 Spatiotemporal clustering

A dynamic graph clustering algorithm must classify nodes
not only according to their spatial separation, like the two
clusters in Figure 6, but also according to how well they are

connected in time. Let G(t) be a dynamic graph as described
in Section 2. In what follows we extend the definition of an
Ncut, eq.(13), to dynamic graphs.

Following the technique presented in Section 4.1, we look
at the transition points of a CTRW-D but this time on the
dynamic graph G(t). Consider the sequence of visited STn-
odes, {X; }ien, where i is the i-th walker transition and X; €
U, starting with Xy taken from the stationary distribution
1 of the number of visits to STnodes. Let C' C U be a sub-
set of STnodes and denote P(C|C) = P(X; € C|Xo € C).
The static graph Ncut, eq.(15), definition can be extended
as follows.

DEFINITION 4.1. Let C C U be a set of STnodes. The
dynamic graph Ncut is defined as

DNcut(C, C) = P(C|C) + P(C|C).

The algorithm in Section 4.1 uses the spectral decomposition
of Ps to approximate the partition of V into disjoint non-
empty subsets Bi,..., Br which minimize the total Ncut
value of the partition (eq.(13)). We also presented an heuris-
tic to find a value for k. In this section we apply the same
techniques to the problem of finding the spatiotemporal clus-
ters of G(t).

Let Cq,...,Cx, C; CU,i=1,...,k, be a partition of U
into k disjoint non-empty subsets that minimizes

k
Z DNcut(C;, C).

i=1

We denote subsets Ci,...,Cr spatiotemporal clusters (or
STeclusters). Let Q', eq.(3), be the infinitesimal generator
matrix of a CTRW-D with base walker rate v on G(t). The
transition probability matrix of the corresponding embed-
ded Markov chain at the transition points of the walker is

P = —diag(Q)'Q' + I.

Then the rest of the algorithm is a straightforward appli-
cation of the spectral clustering technique presented in Sec-
tion 4.1. A trivial consequence of the NCD argument pre-
sented in Section 3.2.1 is that, distinct from their static
graph counterparts, STclusters are affected by the base walker
rate, -y, with respect to the graph transition rates.

In what follows we present some examples of applications
of the methods presented in this work.

S. EXAMPLES

In this section we study CTRWS, more specifically CTRW-
D, on synthetic and real-world examples. In Section 5.1 we
present an example showing the average residence time of
CTRW-D when walking a real-world mobile network. We
simulate multiple CTRW-D walkers on real-world mobile
device traces [14]. In Section 5.2 we look at two examples
using our algorithm to perform spatiotemporal clustering.
In the first example, a simple ad-hoc network scenario, mo-
bile wireless devices move around in a grid. In the second
example we cluster U.S. states in the dynamic graph span
by vote roll calls of elected state representatives in the U.S.
House of Representatives from 1959 to 2009.

08
1
08
1

CDF
CDF

04
04

02
02

o | =
S S
T T T T

T T T T T T
o 50 100 150 200 250 0.0 1.0 2.0

CTRW-D avg. residency time (days) CTRW-D avg. res. time (days)

Figure 7: CDF of average residence times (in days)
at each mobile (average over 10,000 runs). Base
CTRW-D walker rate v = 10°.

5.1 The time a CTRW-D walker spends on nodes:

A DTN real-world example

In Section 3 we proved that, given some ergodicity con-
ditions, an infinitely long lived CTRW-D spends the same
amount of time at each node of the graph, independent of
the graph dynamics. We call the amount of time a walker
spends on a node the walker residence time on that node. In
what follows we study the average residence time in a real-
world scenario. In our experiment we simulate a CTRW-D
on a real-world bluetooth mobility trace (the Reality Mining
Dataset [14]) and look at the the average residence times.
The trace [14] has bluetooth connectivity data of mobile
phones of 94 subjects during 246 days. Note that the trace-
driven dynamic graph representing the mobile connections
is “highly” disconnected and transient (bluetooth connectiv-
ity needs the two mobiles to be within approximately five
meters of each other). The average number of contacts per
mobile per day is 0.024. As expected, the snapshots of the
dynamic graph are mostly disconnected. The median, the
mean, and the variance of the time between two consecu-
tive changes in the graph are 6.3 minutes, 2 hours, and 1.8
days, respectively. We also observe that some mobiles be-
come permanently disconnected after interacting with other
mobiles for a short period of time.

We simulate a CTRW-D on the trace-driven dynamic graph
where we start the CTRW-D at randomly chosen node at
time ¢ = 0. The base walker rates are v € {1072,1,10%}
(1/7 is the average number of days between the times that
the walker decides to take a step). Figure 7 plots the CDF
of the average walker residence times observed on the graph
when v = 10%. The CDF shows that for 70% of nodes the
walker spends between zero and 1/2 day at the node. Al-
though 1/2 day seem like a long time, recall that the average
number of contact per mobile per day is only 0.024. Note
that the CDF shows that we are close to the ideal case for
most of the nodes: the CDF shaped like a step function
(which would happen if the average walker residence times
was the same for all nodes). Some nodes have large aver-
age residence times becausse the walker tends to get stuck
inside nodes (vertices) that get permanently disconnected.
In a slow walker (y = 1072) we observe that the CTRW-
D gets too few opportunities to sample the dynamic graph

08
1
08
1

CDF
CDF

04

S

02

T T T T T
o 50 100

0 2 a4 6 8

(zoom)

CTRW-D avg. residency time CTRW-D avg. res. time

Figure 8: CDF of average residence times (in days)
at each mobile (average over 10,000 runs). Base
CTRW-D walker rate v = 1.

and the average residence times are not similar. Figure 8
plots the CDF of the average walker residence times when
v = 1. Despite the transient and disconnectedness of the
dynamic graph, our results, depicted in Figure 8, show that
the average time that CTRW-D spends on each mobile is
close to constant (averaged over 10,000 runs). Moreover,
the difference in the average residence times of 60% of the
nodes is 1/20th of the average inter-contact time. These are
promising results that point to the possibility of applying
CTRW-D in scenarios where the graph dynamics are “heav-
ily” transient. Choosing the appropriate value of v for a
given graph dynamic is an important open problem and is
topic of future work.

In what follows we perform spatiotemporal clustering ex-
periments.

5.2 Spatiotemporal clustering

Now we turn our attention to the task of finding spa-
tiotemporal clusters in dynamic graphs. Our main concern
is to present examples in which the ground truth is (some-
what) obvious (to the best we can). In Section 5.2.1 we
present a naive DTN example where mobiles walk on a lat-
tice. Two mobiles nodes are connected (have an edge be-
tween them) if they occupy the same square in the lattice.
Mobiles are colored red and blue and spend more time com-
municating with other mobiles that have the same color.
We see that our algorithm, which is oblivious to color and
mobile dynamics, can group mobiles by color and dynamics
(more details in Section 5.2.1). In Section 5.2.2 we cluster
U.S. states according to the evolution of how their state rep-
resentatives voted in the U.S. House of Representatives from
1959 to 2009. Our algorithm is oblivious to the parties of the
state representatives and to the number of political parties
in the U.S. system. Our algorithm finds that that U.S. states
should be divided into two clusters (which we interpret to
represent those states that the two political parties are dom-
inant). The division of states into clusters appear to follow
the state political inclinations. For instance, Massachusetts
and Kansas are in different clusters.

5.2.1 Naive DTN example

In this section we perform spatiotemporal clustering on a
naive DTN model, represented by a dynamic Markov graph.

The objective of this experiment is to see how our technique
works on a DTN toy scenario. The DTN is modeled as
follows. Consider N wireless mobile agents moving on a r xr
lattice. Agents are colored red or blue and can only move
horizontally or vertically. Two or more agents are allowed to
occupy the same lattice square at the same time. An agent
with color x spends an exponentially distributed amount of
time, 1/u in average, on each square before it moves to an
adjacent square. The rate u is determined by the existence
of other agents with color z in the same square: p = 1/100
if there other agents with color x; u = 1 otherwise. We are
modeling the following behavior: only agents of same color
can transmit data to each other but only if they are in the
same square. An agent spends more time in a square when
transmitting data.

As observers we are oblivious to agent colors or data trans-
missions. We would like to: (1) identify the same colored
agents and (2) determine when data transmissions are taking
place. Although these tasks are straightforward given prior
knowledge, we are interested in the quality of our spatiotem-
poral clustering approach when there is no prior knowledge.
Using the above model we build a dynamic graph G(t).
Agents are represented by nodes. Two nodes have an edge at
time ¢ if their corresponding agents are in the same square
in the lattice at time ¢. We see that G(t) is a Markov dy-
namic graph. Because the number of graph snapshots grows
exponentially in N, we consider an example of N = 3 agents
in a 3 x 3 lattice. Two mobiles are blue, denoted b; and bs,
and one mobile is red, denoted 7.

Our results show the following spatiotemporal clusters
(cluster numbers are arbitrary):

e slow walker (y = 10™%): finds three clusters: (cluster
1) the walker is at the agents b1 or b2, (cluster 2) the
walker is at agent r and r shares its square with either
agents by or ba, and (cluster 3) encompasses all other
cases.

o fast walker (y = 10%): finds nine clusters: (clusters
1 to 7) these clusters contain all STnodes where the
walker is not at an isolated node and (clusters 8 and 9)
contain all STnodes where the walker is at an isolated
node. The difference between clusters 8 in 9 lies in
that in cluster 8 b1 and b2 need at least two moves
to be in the same square (to get connected) while in
cluster 9 by and by are within one move to occupy the
same square.

e medium paced walker (y = 107!): finds two clusters:
(cluster 1) this cluster contain all STnodes where at
least two agents are within few moves from a corner of
the lattice; (cluster 2) contains all STnodes where the
agents are within few moves from the opposite corner
of the lattice.

We observe that the slow walker clusters STnodes according
to the color of the agents, rather than how they move. A
fast walker clusters STnodes mostly according to how the
agents move in the graph (however agent color still helps to
define clusters). A medium paced walker clusters STnodes
according to a reference point in the lattice (e.g., one of the
corners).

5.2.2 U.S. House of Representatives example

This second example uses a dataset from roll call vot-
ing in the U.S. House of Representative [1]. Our dataset
includes all Congresses from the 86th Congress (elected in
1959 during Eseinhower’s second term; this is also the first
Congress with all 50 states) to the 111th Congress (elected
in 2009). Each Congress is a graph snapshot, denoted Gy,
k = 86,...,111, where k is the Congress number. A node
in Gy represents a U.S. state. An edges is added to G as
follows. Let a and b be two nodes (states) in Gi. Consider
all possible pairs of tuples between a state representative of
a and a state representative of b. We compare each tuple by
counting the fraction of “Yay” and “Nay” votes of each bill
that both state representatives voted the same way. A tuple
of state representatives match if they have voted the same
way in at least 70% of the bills. Two nodes (states) a and b
have an edge if more than 50% of its tuples are a match.

ALABAMA

cluster 1

UTAH
VIRGINI
WYOMING
IOWA
ALASKA

| OKLAHOM
CALIFOR

cluster 2

86th 91th 96th 101th 106th
Congress

Figure 9: U.S. states clustered by our algorithm us-
ing House roll call votes from 1959 to 2009. The
figure shows a 50 x 24 matrix with states (nodes)
as rows and Congress number (graph snapshot) as
columns. Let R;; (D;;) be the number of Republi-
can (Democrat) representatives from state i elected
in Congress j. Element (i,j) of the matrix is col-
ored either red, blue or yellow depending whether
R;; > Dij;, Dij > Rij;, or D;j = R;j, respectively.

We model the residence time of each Congress is an ex-
ponential random variable with rate one (the value of this
rate is arbitrary). A graph snapshot, Gy, k = 86,...,110,
can transition to snapshots Git1 and Gk_1. Snapshot Ggr
transitions only to Ggs; similarly G111 transitions only to

G110. The choice of transition rates and the structure of
the graph MC is arbitrary, enough just to give a sense of
time passing between two consecutive Congresses. In this
example we are just interested in the long run clustering of
voting patters per state. We set the base random walker
rate v = 107*. Our algorithm is oblivious to: (1) state
representative political party affiliation, (2) the number of
political parties, and (3) state political inclinations. Fig-
ure 9 show that our algorithm divided the states into two
clusters (in agreement with the U.S. political system where
there are only two main parties). The results shows that our
algorithm seem to have divided states according to their po-
litical tendencies. This result may shed light in our political
process. States may have Republican or Democratic ma-
jorities but the state’s true conservative or liberal nature is
reflected in how their representatives vote over time. For in-
stance, Arkansas (Bill Clinton’s home state) has no Repub-
lican majority in the House from 1959 to 2009. However, our
algorithm places Arkansas in “cluster 1” (the “Republican”
cluster). Arkansas is an interesting example. Since 1960 Re-
publican presidential candidates have best their Democratic
opponent 8 times in Arkansas (there were 13 presidential
elections between 1959 and 2009 including two races where
Bill Clinton won Arkansas). Vermont, placed in “cluster 27,
has had a number of Republican majorities in the House but
is considered a liberal state according to Wikipedia (and is
one of the few states with same-sex marriages, for instance).

6. RELATED WORK

Random walks have been widely used to understand and
characterize graphs due to its well understood steady state
behavior. By leveraging the steady state distribution of ran-
dom walks, principled mechanisms for characterizing and
estimating vertex-related properties can be devised [32, 16,
26, 35, 36].

It follows that random walks can potentially be used to
understand and characterize dynamic graphs. In fact, ef-
forts in this direction concerning time-independent dynamic
graphs (i.e., each snapshot is independent of the previous)
have appeared in the literature [10, 20, 22, 34], mainly in
the context of determining upper and lower bounds for the
cover time of random walks. More recently, proposals to de-
fine time-dependent dynamic graph models as well as char-
acterize random walks in them have also appeared in the
literature [3, 11, 2]. However, these efforts have focused on
discrete-time dynamic graph models and random walks with
the goal of computing the cover time of random walks (in
special graph structures [3], in specific dynamic graph mod-
els [11], or through numerical evaluations [2]). Our work
differs from these in the sense that we consider continuous-
time dynamic graph models and continuous-time random
walks with the goal of analytically characterizing the steady
state behavior of the walker.

Besides understanding their general behavior on dynamic
graphs, random walks have also been recently used to char-
acterize properties of vertices in these contexts. One par-
ticular application is vertex clustering. Early work in this
direction define clusters in a dynamic graph to be connected
components in the graph snapshots [5] or assume a static
hypergraph [9]. Clustering of truly dynamic graphs mod-
els has only recently being investigated [29]. This first ap-
proach is based on extending the notion of community struc-
ture (introduced in [31]) to dynamic graph models and is

rather pragmatic, without a principled theoretical founda-
tion. In fact, it is non-trivial to grasp the meaning of spatio-
temporal clusters, let alone define metrics that yield intu-
itive results. Our work focuses on applying continuous-time
random walks (for which we know the steady state behav-
ior) to clustering in dynamic graphs in an attempt to better
understand clustering in this context.

Finally, random walks have also been used as a mech-
anism to measure and estimate characteristics of vertices
(e.g., fraction of vertices of a particular kind) in large static
graphs [16, 26, 36]. More recently, efforts to measure char-
acteristics of vertices in dynamic graphs have also appeared
in the literature [40, 35]. However, these are mostly pre-
liminary and exploratory work, indicating potential pitfalls
and biases introduced by fast changing dynamic graphs. In
contrast, our works is a first step at providing a theoretical
foundation for measuring and characterizing vertices using
random-walks in a class of dynamic graphs.

7. DISCUSSION AND CONCLUSION

Technological progress has brought dynamic networks to
play a major hole in society and, as such raising recent at-
tention to understand the fundamental principles that gov-
ern their behavior. Despite their importance, very little is
known about them. Our work is a first step towards under-
standing a few basic properties of dynamic networks.

Our work indicates that CTRW yields a principled mech-
anism for characterizing topological and vertex-related fea-
tures of dynamic graphs. By considering Markov dynamic
graph models we derive closed-form analytical solution to
the steady state of CTRW and CTRW-D, which have strik-
ingly different behavior. While the steady state of CTRW
is dependent on the walker rate, CTRW-D has predictable
behavior which is independent not only of walker, but also
graph structure and dynamics. These findings have pro-
found implications for CTRW-based methods for charac-
terizing dynamic graph properties (e.g., sampling). Using
CTRW-D we devised a metric for characterizing spatiotem-
poral clusters, a concept that is still on infancy.

8. REFERENCES

[1] http://voteview.com.

[2] Utku Giinay Acer, Petros Drineas, and Alhussein A.
Abouzeid. Random walks in time-graphs. In
Proceedings of the Second International Workshop on
Mobile Opportunistic Networking, MobiOpp’10, pages
93-100, 2010.

[3] C. Avin, M. Koucky, and Z. Lotker. How to explore a
fast-changing world. (on the cover time of dynamic
graphs). In Proc. ACM ICALP, pages 121-132, 2008.

[4] A. Azran and Z. Ghahramani. A new approach to
data driven clustering. In Proc. International
Conference on Machine Learning, 2006.

[5] S. Banerjee and S. Khuller. A clustering scheme for
hierarchical control in multi-hop wireless networks. In
IEEE INFOCOM’01, 2001.

[6] A. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, pages 509-512, October
1999.

[7] C.C. Bilgin and B. Yener. Dynamic network evolution:
Models, clustering, anomaly detection. Technical
report, RPI Technical Report 08-08, 2008.

8]

[11]

[12]

[13]

[15]

[16]

[19]

[20]

[22]

[23]
[24]

[25]

N. Bisnik and A.A. Abouzeid. Optimizing random
walk search algorithms in p2p networks. Computer
Networks, 51(6):1499-1514, 2007.

U.V. Catalyurek and C. Aykanat.
Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. Parallel
and Distributed Systems, IEEE Transactions on,
10(7):673-693, jul 1999.

Andrea E. F. Clementi, Francesco Pasquale, Angelo
Monti, and Riccardo Silvestri. Communication in
dynamic radio networks. In Proc. ACM PODC’07,
pages 205—-214. ACM, 2007.

Andrea E.F. Clementi, Claudio Macci, Angelo Monti,
Francesco Pasquale, and Riccardo Silvestri. Flooding
time in edge-markovian dynamic graphs. In Proc.
ACM PODC"’08, pages 213-222. ACM, 2008.
Pierre-Jacques Courtois. Decomposability, Queueing
and Computer Systems Applications. Academic Press,
1976.

E. de Souza e Silva and H.R. Gail. Transient Solutions
for Markov Chains. In W. Grassmann, editor,
Computational Probability, pages 43-79. Kluwer
Academic Publishers, 2000.

Nathan Eagle, Alex (Sandy) Pentland, and David
Lazer. Inferring friendship network structure by using
mobile phone data. PNAS, 106(36):15274-15278, Sept.
2009.

A. Gautreau, A. Barrat, and M. Barthelemy.
Microdynamics in stationary complex networks.
PNAS, 106:8847-8852, 2009.

M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
A walk in Facebook: Uniform sampling of users in
online social networks. In Proc. IEEE INFOCOM,
2010.

C. Gkantsidis and M. Mihail. Hybrid search schemes
for unstructured peer-to-peer networks. In Proc. IEEE
INFOCOM, 2005.

C. Gkantsidis, M. Mihail, and A. Saberi. Random
walks in peer-to-peer networks: algorithms and
evaluation. Perform. Eval., 63(3):241-263, March
2006.

P. Grindrod and D.J. Higham. Evolving graphs:
dynamical models, inverse problems and propagation.
Proc. of the Royal Society A, 2010.

S.M. Hedetniemi, S.T. Hedetniemi, and A.L.Liestman.
A survey of gossiping and broadcasting in
communication networks. Networks, 18(4):319-349,
1988.

Stratis Ioannidis and Peter Marbach. Absence of
evidence as evidence of absence: A simple mechanism
for scalable p2p search. In Proc. of the IEEE
INFOCOM’09, 2009.

D. Kempe and J. Kleinberg. Protocols and
impossibility results for gossip-based communication
mechanisms. In Proc. of Symposium on Foundations
of Computer Science (FOCS), pages 471-480, 2002.
R. Lambiotte. Multi-scale modularity in complex
networks. In Proc. of 8th WiOpt, April 2010.

Ulrike Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395-416, 2007.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.

32]

(33]

34]

(35]

(36]

(38]

39]

(40]

(41]

Search and replication in unstructured peer-to-peer
networks. In Proc. of the 16th international
Conference on Supercomputing, 2002.

L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay
networks: random walk methods. In Proc. of the
PODC, pages 123-132, 2006.

M. Meila and J. Shi. A random walks view of spectral
segmentation. In 10th International Workshop on
Artificial Intelligence and Statistics, 2001.

M. Meila and J. Shi. A random walks view of spectral
segmentation. In International Workshop on Artificial
Intelligence and Statistics (AISTATS), 2001.

Peter J. Mucha, Thomas Richardson, Kevin Macon,
Mason A. Porter, and Jukka-Pekka Onnela.
Community Structure in Time-Dependent, Multiscale,
and Multiplex Networks. Science, 328(5980):876-878,
2010.

Boaz Nadler, Stéphane Lafon, Ronald R. Coifman,
and Ioannis G. Kevrekidis. Diffusion maps, spectral
clustering and eigenfunctions of fokker-planck
operators. In in Advances in Neural Information
Processing Systems 18, pages 955-962. MIT Press,
2005.

M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577-8582, 2006.
M.E.J. Newman. A measure of betweenness centrality
based on random walks. Social Networks, 27(1):39-54,
January 2005.

A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Proc. of
NIPS, 2001.

B. Pittel. On spreading a rumor. SIAM Journal on
Applied Mathematics, 47(1):213-223, 1987.

A. H. Rasti, M. Torkjazi, R. Rejaie, N. Duffield,

W. Willinger, and D. Stutzbach. Respondent-driven
sampling for characterizing unstructured overlays. In
Proc. of IEEE INFOCOM’09 Mini-Conference, 2009.
B. Ribeiro and D. Towsley. Estimating and sampling
graphs with multidimensional random walks. In Proc.
of the ACM SIGCOMM Internet Measurement
Conference, Nov 2010.

A. Scherrer, P. Borgnat, E. Fleury, J.-L. Guillaume,
and C. Robardet. Description and simulation of
dynamic mobility networks. Computer Networks,
52:2842-2858, Oct. 2008.

J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 22:888-905, 2000.

Herbert A. Simon and Albert Ando. Aggregation of
variables in dynamic systems. Fconometrica,
29:111-138, 1961.

Daniel Stutzbach, Reza Rejaie, Nick Dulffield,
Subhabrata Sen, and Walter Willinger. On unbiased
sampling for unstructured peer-to-peer networks.
IEEE/ACM Trans. Netw., 17:377-390, April 2009.
Marco Zuniga, Chen Avin, and Manfred Hauswirth.
Querying dynamic wireless sensor networks with
non-revisiting random walks. In Proc. EWSN 2010,
pages 49-64, 2010.

