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ABSTRACT
Efficient marketing or awareness-raising campaigns seek to
recruit n influential individuals – where n is the campaign
budget – that are able to cover a large target audience
through their social connections. So far most of the re-
lated literature on maximizing this network cover assumes
that the social network topology is known. Even in such
a case the optimal solution is NP-hard. In practice, how-
ever, the network topology is generally unknown and needs
to be discovered on-the-fly. In this work we consider an un-
known topology where recruited individuals disclose their
social connections (a feature known as one-hop lookahead).
The goal of this work is to provide an efficient greedy online
algorithm that recruits individuals as to maximize the size
of target audience covered by the campaign.

We analyze the performance of a variety of online algo-
rithms currently used to sample and search large networks.
We also propose a new greedy online algorithm, Maximum
Expected d-Excess Degree (MEED), and provide, to the best
of our knowledge, the first detailed theoretical analysis of the
cover size of a variety of well known network sampling algo-
rithms on finite networks. Our proposed algorithm greedily
maximizes the expected size of the cover. For a class of ran-
dom power law networks we show that MEED simplifies into
a straightforward procedure, which we denote MOD (Max-
imum Observed Degree). We substantiate our analytical
results with extensive simulations and show that MOD sig-
nificantly outperforms all analyzed myopic algorithms. We
note that performance may be further improved if the node
degree distribution is known or can be estimated online dur-
ing the campaign.

1. INTRODUCTION
This paper addresses the need to efficiently select n in-

dividuals in a network such that they cover, through their
neighbors, the largest possible fraction of the network. On-
line social networks have generated much attention as a
breeding ground for new forms of social studies, social mobi-
lization, and online campaigns. Recruiting individuals from
a population – for instance, recruiting volunteers to get their
friends to vote in an election – is no easy task. The recruit-
ment of each individual comes at a cost in time, money,
and social capital; and the total budget is often small with
respect to the total population. Moreover, recruitment is
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frequently targeted towards a subpopulation – say, individ-
uals that will likely vote for a given candidate – that may
be a relatively small fraction of the whole population. Most
works on network cover, e.g. [12, 16, 29], either consider the
social network topology to be known in advance or assume
the capability of a two-hop lookahead (where the identity of
all nodes within a two-hop neighborhood of a recruited node
are known), which is often not the case in the wild.

In this work we look at the cover problem when the net-
work topology is unknown. Following previous literature, we
assume that any individual in the network can be recruited –
but in our case recruitments mostly happen through friends
recruiting friends. This link-tracing technique has been long
used by social scientists to sample hard-to-reach subpopula-
tions [13, 15, 18]. The homophily often present in social net-
works – the tendency for similar individuals to be friends [30]
– enables the likely effective recruitment of individuals that
are either in the target subpopulation or know many un-
recruited individuals in the target subpopulation. This is
achieved simply by asking each recruited individual to refer
other target individuals.

The recent 2012 U.S. presidential election presents a real-
life example of an application of link-tracing recruitments to
maximize the network cover of a target subpopulation. A
candidate’s Facebook app asked its subscribers to send get-
out-to-vote reminders to their like-minded friends in swing
states [19]. Thus, the effectiveness of a subscriber is mea-
sured by the amount of its friends that live in swing states.
Moreover, these messages also raised awareness of the app
itself, allowing it to spread through the target subpopula-
tion of interest (see also Bond et al. [7] for a description of
a get-out-to-vote Facebook app experiment in the 2010 U.S.
elections).

Problem Formulation
We formulate the target subpopulation cover problem as a
maximum connected cover (MCC) problem on an unknown
connected graph G = (V,E) (we also refer to G as a net-
work), where V is the set of target individuals and E the set
of individuals’ mutual connections. We assume all graph pa-
rameters are unknown. Our analysis can be easily extended
to a disconnected network by considering each connected
component separately.

Our main goal is to design efficient online greedy algo-
rithms to solve the following problem on G: let n be a given
campaign budget; we want to determine a group of n indi-
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viduals to be recruited in order to maximize the size of the
covered subset, i.e. of the set including the recruited nodes
and their neighbors. Our only initially available information
is a single node sampled from the population. Later we can
acquire the neighborhood of any recruited node. It follows
that the recruited nodes form a connected subgraph.

More formally, let B(t) be the set of t known target in-
dividuals after t recruitments (also denoted the t-th step).
Let B(0) be the set containing the initially known individ-
ual1 Let N (B(t)) be a function that returns the set of un-
recruited neighbors of B(t) ⊆ V ; Fig. 1 illustrates B(t) and
N (B(t)). The online algorithm proceeds as follows: at step
t, 0 < t ≤ n, the algorithm recruits node v ∈ N (B(t − 1))
and performs the update B(t) = B(t − 1) ∪ {v}. The abil-
ity to obtaining the identities of the neighbors of recruited
nodes, N (B(t)), ∀t, is known as one-hop lookahead in the
graph sampling literature [1, 31]. The objective of the on-
line algorithm is to try to maximize the size of the network
cover set W(t) = B(t) ∪ N (B(t)), for t = 1, . . . , n, without
having a priori access to topology information. We refer to
the problem of online covering an unknown network in the
presence of one-hop lookahead as the online myopic network
covering problem.

Contributions
We make the following contributions:

(1) We thoroughly evaluate – analytically and through ex-
tensive simulations on social network datasets2 – the per-
formance of several known network sampling algorithms.
(1.1) We investigate the cover sizes of Breadth-First Search
(BFS) and Depth-First Search (DFS). We observe a con-
sistent large variance in the cover sizes found by BFS and
that BFS tends to underperform in comparison to a greedy
oracle scheme that recruits at every step the node with
the largest number of uncovered neighbors. We partially
blame network homophily for the lack of performance from
BFS. DFS, which at first sight should improve upon BFS
in circumventing the above homophily problem, performs
even worse. Using random networks, we show why DFS
finds a small cover after t � N recruited nodes. (1.2) A
Random Walk (RW), more precisely RW without replace-
ment (RWnr), where nodes revisited by the walker are not
counted towards the recruitment budget, is shown to con-
sistently outperform (sometimes significantly) BFS in our
simulations. (1.3) We propose a new online algorithm in-
spired by the Susceptible-Infected (SI) epidemic model but
observe that RWnr is consistently more efficient than SI.

(2) Our work is, to the best of our knowledge, the first to
provide an analytical characterization of the sizes of W(t)
(the cover) as a function of t (recruited nodes), for RWnr and
the SI epidemic algorithms on finite networks. As recently
acknowledged in [10], this was a challenging open problem.
Moreover, we establish an interesting connection between
cover through RWs and the coupon subset collection prob-
lem. We validate our theoretical results through simulations.

(3) We propose a new online algorithm (MEED, Maximum
Expected d-Excess Degree) that greedily maximizes the ex-

1
The analysis can be extended to consider many initially known in-

dividuals. Note that the task of finding the initial set of nodes in the
target subpopulation is a problem on its own [1, 28].
2
See Sec. 9 for some limited analysis of other “non-social” networks.

pected size of the cover. For a broad class of power law
networks, MEED simplifies into a straight forward heuris-
tic, which we denote Maximum Observed Degree (MOD).
We substantiate our analytical results with simulations. Ex-
tensive simulations on a variety of social network datasets
show that MOD consistently outperforms (sometimes signif-
icantly) all other analyzed algorithms. Performance can be
further improved if the node degree distribution is known or
can be estimated online during the campaign.

Outline
The reminder of this work is organized as follows. Sec. 2
presents the notation and background used throughout this
work. Sec. 3 discusses optimal solutions and approximations
in connection to the connected minimum dominating set.
Sec. 4 presents the datasets used in this work and our simula-
tion setup. Sec. 5 provides an analysis of the effectiveness of
Breadth-First-Search (BFS) and Depth-First-Search (DFS).
Sec. 6 provides a deep analysis of the effectiveness of two
types of random walks and compare them to BFS. Sec. 7 pro-
poses a sampling algorithm inspired by Susceptible-Infected
(SI) epidemic models. We also provide an analytical solu-
tion describing the cover size of SI as a function of t. An
important feature of our analysis is our ability to model
finite graphs, which is key to understanding the effective-
ness of large campaigns in respect to the size of the target
population. Sec. 8 proposes MEED and MOD as a simple
approximation of MEED. Sec. 8 also provides theoretical
and simulation results, the latter comparing MOD against
the other algorithms. And, finally, Sec. 9 summarizes our
contributions and reviews the related work.

2. NOTATION & BACKGROUND
We consider an unknown connected network G = (V,E)

with N = |V | nodes, M = |E| edges, and degree distri-
bution {pk}k=1,...N−1. We assume all graph parameters
are unknown to us. Denote Na(v) the set of neighbors
of node v ∈ V , irrespective of their recruitment status,
and kv = |Na(v)| is the degree of v. For each step t =
1, . . . , n, where n ∈ {1, . . . , N − 1} is the campaign bud-
get, we classify the nodes in V into three disjoint sets. The
set B(t) denotes the recruited nodes at step t; these are
the black nodes in Fig. 1. Unrecruited neighbors of re-
cruited nodes are denoted observed nodes and form the set
N (B(t)) = ∪v∈B(t)Na(v) − B(t) (gray nodes in Fig. 1). We

say a node v ∈ V is covered at step t if v ∈ W(t), where
W(t) = V −B(t)∪N (B(t)) is the set of all uncovered nodes
(white nodes in Fig. 1) and W(t) = V −W(t) its comple-
ment. Note that at time t we are unaware of the existence
of nodes in W(t).

W(t)

W(t)

B(t)

N (B(t))

Figure 1: Network sampling evolving sets.
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Variable Description

N no. of nodes
M no. of edges
Na(v) set of neighbors of v ∈ V
〈x〉 average value of quantity x
pk fraction of nodes with degree k
B(t), (B(t)) set (number) of sampled nodes at step t
N (A), (N(A)) set (no.) of unrecruited neighs of A ⊆ V
W(t), (W (t)) set (no.) of uncovered nodes at step t

Table 1: Notation Table

The sizes of the three sets B(t), N (B(t)), andW(t) are de-
noted B(t), N(B(t)) and W (t), respectively. Clearly B(t) +
N(B(t)) + W (t) = N at any step 1 ≤ t ≤ n. Finally, for
the sake of simplicity, we allow a slight abuse of notation,
denoting by 〈.〉 both the empirical mean and the expected
value. The exact interpretation of 〈x〉 will then depend on
the nature of the quantity x. We use the convention that
〈k〉 denotes the average degree. Table 1 summarizes the
notation used throughout the paper.

Our analysis makes extensive use of the configuration ran-
dom graph model [39]. This is a defined as a uniform prob-
ability distribution over the ensemble of the graphs where
nodes have a given degree distribution {pk}k=1,...N−1. A
configuration model sample can be generated as follows.
The degree ki is attributed to each node i according to
the selected degree distribution. Each vertex i can then be
thought of having ki stubs attached to it that are the ends of
edges-to-be. By connecting randomly selected stubs’ pairs
the graph sample is generated.

The configuration model is widely used in the complex
network literature [5, 40] also for the simplicity of the anal-
ysis. Moreover, as we will soon see, the formulas we derive
to predict the value of N(B(t)) considering the configura-
tion model match the results of our simulation for actual
topologies remarkably well.

3. NETWORK COVERS, ORACLES,
& APPROXIMATE SOLUTIONS

The problem we study is closely related to the well-studied
Maximum coverage [36] and Minimum Connected Dominat-
ing Set (MCDS) problems. The maximum coverage problem
can be described in our setting as selecting at most n nodes
such that the union of the nodes they cover has maximal size.
The maximum coverage problem is NP-hard, and cannot be
approximated within 1 − 1/e + o(1), where e is the Euler
constant. A simple submodular function greedy algorithm,
however, is able to find a 1 − 1/e approximation [36]. Our
problem setting, however, requires the recruited nodes to be
connected to each other. In the connected setting, above
mentioned greedy algorithm is similar to a greedy algorithm
used to solve the MCDS, described as follows.

Given a graph G = (V,E) with N nodes, DS ⊆ V is a
dominating set if ∀v∈V : v ∈ DS or v ∈ V −DS. Thus, if all
nodes in DS are recruited as dominators, it may be possible
to reach all nodes in the network through these dominators.
The MDS problem is to find the set DS with the minimum
cardinality. MCDS imposes an additional restriction that
the subgraph induced by the vertices in DS has to be con-
nected.

Our goal is not to cover all of G; instead, we seek to cover
as much of G as possible with recruitment budget n. How-

ever, since MCDS is very closely related to our problem, key
results and techniques from the MCDS literature can pro-
vide crucial insights into the role of lookahead in network
coverage especially about worst-case performance guaran-
tees when compared to the optimal solution. In a situa-
tion where complete network knowledge is available3, solving
MCDS is NP-hard [12]. However, there exist well-known lin-
ear approximation preserving reductions (L-reductions [21])
from the SetCover problem to MCDS [16] that yield a
guaranteed approximation factor of O(lnn).

Definition 3.1 (Observed degree). The number of
recruited neighbors of a node.

Definition 3.2 (d-excess degree). A node with de-
gree k and observed degree d ≤ k has excess degree k − d.

If there is limited “lookahead”, say, two-hop information
of the neighborhood of each recruited node, the natural al-
gorithm is to greedily recruit nodes that have the maximum
number of uncovered neighbors, i.e., with the maximum ex-
cess degree. Guha and Khuller [16] implemented this greedy
algorithm by building growing a tree T in an online fashion,
starting from a single node. Initially all nodes are unre-
cruited (white). At each step, a vertex v ∈ T with the
largest excess degree is recruited (colored black) and edges
are added to T which exist between v and all its neighbors
that are not in T (these unrecruited neighbors are colored
gray). The algorithm stops when all nodes are colored either
gray or black, and the connected dominating set (CDS) is
the set of non-leaf nodes in T . They showed that the above
algorithm has a guaranteed approximation ratio of O(∆),
where ∆ is the maximum degree of the network. We refer
to the aforementioned algorithm as “Oracle” as it requires
two-hop lookahead in order to compute the excess degree of
nodes in N (B(t))), a capability often missing in real online
social networks. An example of an implementation of Guha
and Khuller’s Oracle can be found in Maiya and Berger-
Wolf [29] (denoted Expansion Sampling in their work).

Interestingly, Guha and Khuller also showed that the ap-
proximation factor can be significantly improved when three-
hop lookahead is exploited in a modified greedy step: recruit
a pair of adjacent vertices (i.e. mark them black) and com-
pare the yield in the number of gray nodes acquired in the
neighborhood of this pair; at each step greedily select a pair
of vertices or a single vertex that maximizes this yield. This
modified greedy step surprisingly yields an approximation
ratio of O(ln ∆) instead of O(∆). This additional lookahead,
however, is not be available in several practical settings that
we are interested in studying in this paper.

In practice, with one-hop lookahead, only observed degree
information is available at nodes in B(t). This results in
our MEED algorithm, which uses Guha and Khuller’s Or-
acle approach using the expected excess degree in place of
the true excess degree. MEED, however, requires the degree
distribution of the network as side information. In the ab-
sence of degree distribution information, we show that for
some random power law networks, a natural myopic online
greedy algorithm of recruiting the node with the maximum
observed degree approximates MEED – this is our MOD al-
gorithm and also Maiya and Berger-Wolf’s SEC scheme [29].

3
This could arise in “intelligence gathering” applications where ana-

lysts have pieced together the topology of an adversary network and
now want to recruit the best (connected) set of influencers that will
cover it.
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Expected value analysis as well as simulations in Sec. 8 show
that MOD is a good heuristic when operating on realistic
social network such as those obeying a power law degree
distribution.

We note that due the online nature of the different algo-
rithms presented above, it is easy to apply the maximum
budget criteria of MCNC and stop whenever the allocated
budget n has been consumed. While the theoretical approx-
imation guarantees may not strictly apply (unless n = N),
we believe that in practice they still hold for the networks
studied in this paper.

4. DATASETS & SIMULATION SETUP
We use the Enron email dataset as the running example

throughout this work. The Enron email dataset contains
data from a subpopulation of about 150 users, mostly senior
management of Enron. This data was made public by the
Federal Energy Regulatory Commission during its investiga-
tion of Enron. In total there are 36,692 nodes (unique email
users) with average degree of 10.02 and average clustering
coefficient of 0.5. The high clustering coefficient suggest
great homophily in this network. The email corpus descrip-
tion can be found in Klimmt and Yang [25]. The version of
the email graph we use can be downloaded from the Stan-
ford’s SNAP repository [37].

We also make use of other social network datasets – all
of them, except Flickr, are available online at SNAP [37].
We now describe our datasets making use of N , 〈k〉, and c
to denote the number of nodes, the average degree, and the
clustering coefficient, respectively: Epinions (N = 75,877,
〈k〉 = 10.7, c = 0.26) and Slashdot (N = 82,168, 〈k〉 = 0.1,
c = 0.23) online social networks, Wiki-talk (N = 2,394,385,
〈k〉 = 3.9, c = 0.2) Wikipedia user-to-user discussion graph,
EmailEU (N = 265,214, 〈k〉 = 2.8, c = 0.28) the network
email communication between users of a large European
research institution, Youtube (N = 1,134,890, 〈k〉 = 5.3,
c = 0.17) friendship network of youtube.com users, and fi-
nally, Flickr dataset, a snapshot of an online photosharing
network with N = 1,715,255 nodes and 〈k〉 = 12.2, collected
in Mislove et al. [33].

We also contrast our social network results with the results
on three non-social networks. These networks can also be
found online at SNAP [37]. Gnutella (N = 62,561, 〈k〉 =
4.7, c = 0.01) a collection of merged P2P client snapshots
collected in Ripeanu et al. [43], HepTh (N = 27,770, 〈k〉 =
25.4, c = 0.3) a paper citation graph, and Amazon (N =
334,863, 〈k〉 = 5.5, c = 0.4) the network of co-purchased
products on the amazon.com website.

Simulation setup.
Unless stated otherwise our metrics consist of averages

over 1,000 simulation runs. We use colored shadows in our
plots to show the value of standard deviation plotted around
the average. The shadow serves two proposes. First, its ver-
tical width multiplied by 1.96/

√
1000 gives approximately

the 95% confidence intervals of our averages. Second, its
value measures the variability between independent runs,
by which we compare how consistently good (or bad) an al-
gorithm performs. In our simulations B(0) includes a single
node recruited uniformly at random from V . The order in
which neighbors of a node appear on its list of neighbors is
randomized from run to run to avoid arbitrary biases that
may arise from the choice of node IDs in the dataset.

5. BFS & DFS ALGORITHMS
We begin our study by comparing the performance of two

different approaches derived from two basic graph traversal
algorithms: Breadth-First Search (BFS) and Depth-
First Search (DFS). BFS is chosen because it is widely
used in network sampling [11, 26, 33, 35]. In these algo-
rithms nodes in the N (B(t)) are recruited according to the
time they were first observed (a node is observed when one
of its neighbors is recruited). If we consider that nodes are
put in a queue when they are first observed and then re-
moved when they are recruited, then BFS employs a First
In First Out discipline for the queue, recruiting the first
observed node in N (B(t − 1)), while DFS employs a Last
In First Out discipline, recruiting the last observed node in
N (B(t − 1)). At each step a new, previously unrecruited
node, is recruited such that at step t = N − 1 all nodes are
recruited, i.e., N(B(N − 1)) = 0.

Fig. 2a shows the average cover size 〈W (t)〉 of BFS and
DFS as a function of t on the Enron email network (recall
that we average over 1,000 simulation runs). We find similar
results on all of our social network datasets, see Figs. 6a-f.
The simulations show while both BFS and DFS achieve the
full coverage for t ≈ N , BFS significantly outperforms DFS
for all other values of t. To understand this difference, we
qualitatively analyze the step in which a given node v ∈ V
with degree kv is recruited.

Because both BFS and DFS follow edges to recruit nodes,
the probability that v is first observed in N (B(t)) at step t
is approximately (γv/N)(1 − γv/N)t−1, where γv = kv/〈k〉
(this simple formula should be a good approximation in
a configuration model where nodes are recruited indepen-
dently by both algorithms; it also assumes t � N). Thus,
large degree nodes tend to be observed earlier in the process
than small degree nodes. As a FIFO policy recruits the earli-
est observed nodes from N (B(t)), BFS tends to recruit large
degree nodes first, on the other hand, a LIFO policy recruits
the latest observed nodes from N (B(t)), hence DFS tends
to recruit small degree nodes first. This DFS result
contradicts previous results in the literature [29], which we
revisit in Sec. 9.

Note that Fig. 2a shows larger standard deviations for
BFS than for DFS (although in some social networks the rel-
ative difference may be small). This is because the cover size
of a non-neglegible fraction of the BFS runs deviates from
the average. This instability is due to the strong dependence
of the BFS cover size on the initial node B(0) = {i}. As BFS
explores the network in“waves”(expanding rings from i), the
initial node selection may significantly impact BFS’s cover
size. Moreover, we expect BFS to perform poorly on
networks with a large degree of homophily (as seen at
the end of Sec. 6 in a simple regular lattice example). Ho-
mophily is the tendency of individuals to connect to similar
individuals [30], thus creating patches of clustered nodes in
the network. This means that if v ∈ V is connected to u ∈ V
and z ∈ V , then u and z are more likely to be connected
than random chance would allow. In addition, if v is not
connected to w ∈ V then u and z are more likely than ran-
dom not to be connected to w. In such scenario it pays not
to recruit both u and z together, as their neighbors signifi-
cantly overlap with higher probability than random chance
alone would allow.

DFS clearly avoids the above homophily problem by travers-
ing the graph in depth first order. To increase the cover set
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size we only need to modify the LIFO recruitment policy
without resorting to BFS’s FIFO policy. In what follows
(Sec. 6) we explore the use of Random Walks (RWs). As we
see in the next section, a RW share commonalities with DFS
in that it also traverses the graph from the last recruited
node (however, a RW may try to recruit a node more than
once). But, different from DFS, it allows recruitment of ob-
served nodes in N (B(t)) irrespective of when the node was
observed. One drawback of RWs – that fortunately can be
easily mitigated via caching – is the possibility of recruiting
already recruited nodes.

6. RW ALGORITHMS
Now let us analyze the cover size of Random Walks

(RWs) with one-hop lookahead. Increased attention
has been paid to random walks as a tool for network sam-
pling [13–15, 27, 42] mostly due to its good statistical prop-
erties. In the RW algorithm N (B(t)) is still the set of all
observed unrecruited nodes at time t. However, in a RW the
node to be recruited at step t+1 is a random neighbor of the
node recruited at step t, regardless of the time that the node
was observed or even if it was already recruited. We begin
our analysis assuming that a node that is recruited again at
step t needs to be paid (that is, time advances even if no new
recruitments were performed). We refer to this traditional
RW algorithm as RW with replacement (RW), in which
nodes already recruited can be recruited again. At the end
of this section we extend our analysis to the case of RW
without replacement (RWnr) where already recruited
nodes are “cached” so that recruiting nodes from B(t) does
not count towards the recruitment budget.

The cover size of RWs with one-hop lookahead has been
the subject of previous work [31]. However, we feel that one
needs to exercise caution when interpreting the results in Mi-
hail et al. [31]. Mihail et al. shows that a RW with one-hop
lookahead finds the majority of nodes in sublinear time in
an infinite configuration model with heavy tailed power law
degree distribution. As our approach demonstrates below,
covering finite networks is patently different from covering
infinite networks. In particular, we show that for any given
finite sized network, the discovery rate is never superlinear
(this linear growth rate, however, can be large). Our model
also allows us to predict with high accuracy the expected
number of covered nodes as a function of 0 < t ≤ n.

Let us first analyze the performance of RW. In RW, the
expected cover size at step t is

〈W (t)〉 = N −
∑
∀v∈V

P [node v is uncovered]

= N − q
∑
∀v∈V

Na(v)P
t1,

(1)

where q is a vector with the initial distribution of the ran-
dom walk, 1 is a column vector of ones, and Na(v)P is a
taboo transition probability matrix defined by

[Na(v)P]ij =

{
pij , if i, j 6∈ N (v),
0, otherwise,

with Na(v) denoting the neighborhood set of node v, includ-
ing node v.

The above formula (1) requires complete topology knowl-
edge and does not allow simple analytical solution. How-
ever, consider the following approximation to a RW. Nodes

are recruited with replacement in i.i.d. fashion according to
the stationary distribution of the random walk. Then, the
expected cover size at step t would be given by

〈W (t)〉 = N −
∑
∀v∈V

P [node v is uncovered]

= N −
∑
∀v∈V

(1− αv)t,
(2)

where
αv =

1

2M

kv +
∑

j∈Na(v)

kj

 .

The above can be interpreted as a particular case of the
coupon subset collection problem [2, 32]. Each step t, t =
1, . . . , N − 1, we draw a subset of “coupons”, a subset of
newly observed nodes in our terminology. We can observe
a node either by sampling it directly (this corresponds to
the term kv/(2M)) or by sampling one of its neighbors (this
corresponds to the term

∑
j∈Na(v) kj/(2M)). The value of

kv+
∑
j∈Na(v) kj is known as the second neighbor degree [1].

In Appendix A we use matrix perturbation theory to show
that (2) well approximates (1) for fast mixing RWs (see [4,
42] for fast mixing RW techniques).

Figure 3: (Enron email) Theoretical RW cover (red line)
against simulations (blue circles) on Enron email network. Plots
in semi-log scale.

Applying the Taylor series expansion and the fact that
2M = 〈k〉N , we can write – for small t – the following
approximation

〈W (t)〉 ≈ t

〈k〉N
∑
∀v∈V

kv +
∑

j∈Na(v)

kj

 .

Next, we note that
∑
∀v∈V

∑
j∈Na(v) kj =

∑
∀v∈V k

2
v,

which yields

〈W (t)〉 ≈ t 〈k
2〉+ 〈k〉
〈k〉 ,

where 〈k2〉 is the empirical second moment. Thus, the cover
process has approximately linear large growth rate in the
initial phase, if the second moment 〈k2〉 is large with respect
to the average 〈k〉. Next, let us treat (2) as a continuous
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function of t > 0. The second derivative with respect to t is

d2

dt2
〈W (t)〉 = −

∑
∀v

(1− αv)t log2(1− αv) < 0,

which is a concave function and, consequently, for any fixed
network, the growth rate of the cover of RW with one-hop
lookahead is at most linear. Figure 3 shows that our theoret-
ical result in (2) accurately reflects the cover in simulations
over the Enron email dataset.

Next we analyze the RWnr algorithm. Here, when the
walker comes across an already recruited node, it does not
recruit it again but rather randomly proceeds to one of its
already cached neighbors. We define the algorithm evolution
such that at each step we recruit a new node (that is, “virtual
re-recruitments”do not advance t). RWnr closely follows the
derivations for RW, with the only difference that now some
recruitments cannot be “wasted” on already recruited nodes.
The key observation here is that we need to keep track of the
edges belonging to recruited nodes. We suggest the following
approximation. Let Z(t) be the number of edges not yet
discovered at time t, then we approximate (details can be
found in Appendix B)

〈W (t)〉 ≈ N −
∑
v∈V

t−1∏
i=0

1− 1

2〈Z(i)〉

kv +
∑

j∈Na(v)

kj

 ,

(3)
where

〈Z(t)〉 ≈
∑

(u,v)∈E

t−1∏
i=0

(
1− ku + kv

2〈Z(i)〉

)
.

From (3) we note that RWnr and privileges nodes with large
second neighbor degrees (just like RW does).

The plots in Fig. 2a show that RWnr significantly outper-
forms RW for large values of t. Note that for small values
of t, the graphs in Fig. 2a shows that the performance of
RW is similar to the performance of RWnr. This behavior is
observed because for small values of t, 〈Z(t)〉 ≈ 〈k〉N , and
thus the values of 〈W (t)〉 in eqs. (2) and (3) are similar.

The plots in Fig. 2a also show that RWnr significantly
outperforms BFS. These results are consistent on all other
datasets (refer to the plots in Figs. 6a-f) This curious fact
can be explained by observation that BFS is affected by the
graph homophily.

At first sight, however, it seems that both RW and RWnr
should be impacted by homophily, as both have a tendency
to “over-explore” a neighborhood, just as BFS. However, as
we see next, this depends on the network and, in social net-
works, we believe that this is not likely the case. We contrast
the performance of RW against BFS on two regular lattices.
We choose these graphs because on regular lattices 〈k2〉/〈k〉
is small, leaving just homophily (for BFS) and the RW es-
cape probability (the probability that a RW never revisits
the same node or neighborhood again in an infinite network)
as the primary factors in determining cover size for BFS and
RW. Fig. 4 shows the performance of RW and BFS on regu-
lar 2D and 3D lattices. The plots show the cover size W (t)
as a function of t where both lattices have approximately
N = 105 nodes each. Observe that RW suffers from its
tendency to return to the same nodes. On an infinite 2D
regular lattice a RW returns to the same node with prob-
ability one while in a regular 3D lattice this probability is
0.34 [47]. On the other hand, BFS is affected by the cluster-
ing of the lattice, such that for most recruited nodes BFS in

average covers approximately only one new node per step.
A detailed analysis of these approximations can be found in
Appendix C.

7. SI ALGORITHM
In this section we consider a different method, inspired by

the Susceptible-Infected (SI) model in epidemiology: at
step t recruit a node fromN (B(t)) by randomly selecting one
of the edges between B(t) and N (B(t)). Under SI node v ∈
N (B(t)) with d(v, t) neighbors in B(t) is recruited at time
t with probability d(v, t)/

∑
u∈N (B(t)) d(u, t). Our analysis

of RW-based cover size relied on the fact that a node is
always recruited with probability proportional to the degree
of that node. This is no longer the case for SI-based cover
sizes. Moreover, unlike the SI-related epidemic literature on
infinite graphs [5], we will observe from our analysis that the
probability that a particular node is recruited depends on t,
the number of steps that have been executed.

Before we delve into the analysis of SI, we first show that
we cannot ignore the impact of t on the degree distribution
of nodes in B(t), which, as we see next, becomes significantly
different than the degree distribution across the whole net-
work {pk}k=1,... as t gets larger.

7.1 The effect of t on the degree
distribution of B(t)

In order to model the evolution of B(t) and N(B(t)) we
need to understand the impact of SI recruitment policy on
the degree distribution of the nodes still left to recruit, B(t).
Fig. 5 shows the empirical Complimentary Cumulative Dis-
tribution Function (P [K ≥ k]), denoted CCDF in the plots,
of nodes’ degrees in B(t) using SI over the Enron email net-
work for t ∈ {1000, 2000,4000,8000,16000} and against the
CCDF of all the nodes in V . The empirical CCDF is aver-
aged over 1 000 runs. Observe that even when t is reasonably
small, e.g., t = 1,000, the tail of the CCDF of B(t) is still
significantly “lighter” than the tail of the CCDF of V . This
is because large degree nodes are more likely to be recruited
early to B(t); and as B(t) is depleted of large degree nodes,
the tail of the degree distribution of B(t) gets “lighter”. We
use this property when analyzing the cover performance of
SI.

7.2 Analysis of SI cover
We start our analysis by characterizing the evolution of

the cover size as a function of t. Section 7.1 shows that
the number of remaining nodes in B(t) with degree k =
1, . . . , N − 1 is a function of t and k. Hence, our analysis
divides the recruited nodes in B(t) into classes correspond-
ing to different degrees. In particular, using mean field ap-
proximations we characterize bk(t), the fraction of nodes of
degree k in G that are recruited by time t, k = 1, . . . , N −1.
As the number of nodes of degree k in B(t) is given by
Npk(1 − bk(t)), the degree distribution of B(t) can be ap-
proximated by {Cpk(1−bk(t))}k=1,...,N−1, where C is a nor-
malizing constant. We now characterize the connections be-
tween nodes of various degrees between B(t) and B(t). In
the configuration model – described in Sec. 2 – the proba-
bility that a given node u ∈ V of degree k is connected to a
randomly chosen node X ∈ V of degree kX = h is

pkh = 1−
(

1− h

2M

)k
.
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(a) (b)

Figure 2: (Enron Network) Empirical average cover size 〈W (t)〉 as a function of t ∈ {1, N − 1}. Fig. 2a compares Oracle, RW, RWnr,
BFS, DFS and Fig. 2b compares Oracle, RWnr, SI, BFS, MOD. Shadows show double the standard deviation of 1,000 simulations; x-axis
in log-scale.

(a) 2D Lattice (b) 3D Lattice

Figure 4: 〈W (t)〉 of RW against BFS on a 2D and 3D lattices. Simulations average over 1,000 runs, standard deviation shown as a
colored shadow. Plots in log-log scale.
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Figure 5: (Enron Network) Complementary Cumulative Distribution Function (CCDF) of B(t) averaged over 1,000 runs, for t ∈
{1000, 2000, 4000, 8000, 16000} recruited nodes in the Enron Network (Enron has approximately N = 36,000 nodes). As SI recruits nodes

in the graph, the degree distribution of the remaining nodes in B(t) suffers a dramatic change. Plot in log-log scale.

The probability that X ∈ B(t) given kX = h is P [X ∈
B(t)|kX = h] = bh(t), from which we approximate the prob-
ability that an infected node u of degree k has an infected
neighbor of degree h by

P [X ∈ B(t) , X ∈ Na(u)|kX = h, u ∈ B(t), ku = k] ≈ bh(t)pkh.

Note that the above approximations assumes that P [X ∈
B(t)] does not depend u ∈ B(t) (a reasonable approximation
if X is randomly chosen from a large population of Nph
nodes in the graph). The probability that no degree h node
connected to u has been recruited at time t can be approx-
imated by (1 − bh(t)pkh)Nph . If we condition on the event
u ∈ B(t), then the probability that u has at least one re-
cruited neighbor is

∏
h(1 − bh(t)pkh)Nph . Take notice that

unconditioning the above on P [u ∈ B(t)] = (1−bk(t)) yields
Υk(t), the probability that at time t a randomly chosen node
of B(t) of degree k is in N (B(t)), given by

Υk(t) = (1− bk(t))

(
1−

∏
h

(1− bh(t)pkh)Nph

)
.

Finally, the expected number of observed nodes at time t+1,
〈N(B(t+ 1))〉, is approximately

〈N(B(t+ 1))〉 ≈
∑
k

NpkΥk(t). (4)

Appendix D contrasts (4) against previous works, e.g. Pastor-
Satorras and Vespignani [41].

Now we derive an equation for the dynamics of the number
of sampled nodes B(t). When we sample a new edge (u, v)
with u ∈ B(t) and v ∈ N (B(t)) from the frontier between
B(t) and N (B(t)), the probability that v has degree k is
proportional to kpk(1 − bk(t)). If we divide it by pkN , we
get the average increase in the fraction of sampled nodes of
degree k, then:

bk(t+ 1) = bk(t) +
k(1− bk(t))

N
∑
h hph(1− bh(t))

. (5)

It is easy to check that

〈B(t+1)〉 =
∑
k

Npkbk(t+1) =
∑
k

Npkbk(t)+1 = 〈B(t)〉+1,

we guarantee that at every step a new node is recruited.
We now contrast our mean field approximations against

simulations. Fig. 7 shows 〈N(B(t))〉 calculated according
to (4) against the empirical value obtained from our sim-
ulations over two datasets, Enron and Gnutella. We plot
the results in log-log scale to facilitate the comparison in
respect to the relative error. Note that our approximation
tracks the simulation results very well. Fig. 2b shows the SI
cover size against the cover size of BFS and RWnr on the
Enron email network. Note that the SI cover size is larger
than the BFS cover size but smaller than that of RWnr.
These results are consistent on all of the datasets analyzed,
see Figs. 6a-f, (albeit sometimes the differences are small).
The takeaway message from Fig. 2b and all the results from
the plots in Figs. 6a-f is that there is much room for im-
provement. And while RWnr clearly outperforms all other
methods in the Enron dataset, this gain all but disappears in
other datasets (Epinions, Slashdot, and Flickr). In what fol-
lows we present an algorithm that consistently outperforms
all of the algorithms studied so far.

8. EXPECTED EXCESS DEGREE
MAXIMIZATION ALGORITHM

One lesson to take away from Guha and Khuller’s Oracle
is that knowing which node in N (B(t)) has the largest ex-
cess degree is crucial to achieving a good cover. While the
excess degree of nodes in N (B(t)) is not available to us, we
may still be able to estimate them from the available infor-
mation. Let d(v, t) be the observed degree of v at step t.
Consider a large degree node v ∈ B(t). We expect v to also
have a large observed degree d(v, t). However, depending
on the degree distribution of the nodes in N (B(t)), there
could be a “saturation point”, where the observed degree
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of v, d(v, t), is so large that the excess degree kv − d(v, t)
is small. In this section we propose an algorithm, denoted
Maximum Expected Excess Degree (MEED), that at
step t > 0 finds a node in N (B(t)) that has approximately
the largest expected excess degree of all nodes in N (B(t)).
In what follows we drop t from our notation for the sake of
conciseness.

Let 〈k|d(v)〉 denote the expected degree of a node v ∈
N (B(t)) with observed degree d(v). Using 〈k|d(v)〉 we pro-
pose the Maximum Expected d-Excess Degree (MEED) heuris-
tic, which chooses the next recruited node v? at step t as to
maximize the expected excess degree of the recruited node.
Another way to describe the MEED scheduler is through a
partial order of the nodes in N (B(t)) in respect to their ex-
pected excess degree. For two nodes u, v ∈ N (B(t)) we say
u ≥k v iff 〈k − d(u)|d(u)〉 ≥ 〈k − d(v)|d(v)〉. Thus, at step t
the MEED algorithm recruits node v? ∈ N (B(t)) if v? ≥k v,
∀v ∈ N (B(t)).

Next we obtain an approximation of 〈k−d|d〉 using {pk}k=1,....
For now we assume {pk}k=1,... is given to us. Later we
show that for some important families of random networks,
the node with maximum observed degree is also the node
with the maximum expected excess degree. Let ζk(t) be
the probability that a random node in B(t) has degree k.
Note that ζk(0) = pk as, by definition, the initial node
in B(0) is randomly sampled from V . In general we have
ζk(t) = Cpk(1 − bk(t)) (as stated in Sec. 7), where C is a
normalization constant. In what follows we omit t for the
sake of conciseness.

LetN (d)(B(t)) ⊆ B(t) denote the set of nodes with at least

d recruited neighbors. Note that N (1)(B(t)) = N (B(t)) and

that N (0)(B(t)) = B(t). Under the configuration model we

can determine {N (d)(B(t))}d=1,... andW(t) through the fol-
lowing process that dynamically assigns nodes from B(t) to
these sets. Let’s assume N � 1 so we do not need to worry
about self-loops. Detach all nodes v ∈ V from their neigh-
bors such that node v with degree kv has kv “active stubs”.4

Iteratively select an active stub in B(t) to a random active

stub in V . Whenever an active stub of a node u ∈ N (d)(t),

d ∈ {0, 1, . . .}, is selected, we add v to N (d+1)(t) and mark
both stubs of the edge “inactive”, that is, we promote u to
N (d+1)(t) but reduce its active degree by one. The following

recursion describes the degree distribution {ζ(d+1)
k }k=d+1,...

of the nodes in N (d+1)(t) in terms of the degree distribution

{ζ(d)k }k=d,... of nodes in N (d)(t)

ζ
(d+1)
k =

(k − d)ζ
(d)
k

〈k〉ζ(d) − d
, k ≥ d, (6)

and ζ
(d)
k = 0 for k < d, where 〈k〉ζ(d) ≡

∑
k≥0 kζ

(d)
k is

the average degree of nodes with at least d recruited (black)
neighbors.

We now retrieve 〈k|d〉 from 〈k〉ζ(d) using the fact that

N (0) ⊇ N (1) ⊇ · · · . Let Nd be the number of nodes in
N (B(t)) with observed degree d. Note that N1 = N(B(t)).
For any two sets A, A′, such that A′ ⊆ A, the following
holds: vol(A − A′) = vol(A) − vol(A′), where vol(B) is the
volume of the set B, i.e. the sum of the all the degrees of
the nodes in B. Considering A = N (d) and A′ = N (d+1) it

4This stub analogy is extensively used to describe configu-
ration models [40].

is easy to show that

〈k|d〉 =

〈
Nd

Nd −Nd+1

〉
〈k〉ζ(d) −

〈
Nd+1

Nd −Nd+1

〉
〈k〉ζ(d+1) .

We approximate the expectations of 〈Nd/(Nd−Nd+1)〉 and
〈Nd+1/(Nd−Nd+1)〉 using the observed values of Nd+1 and
Nd.

Our calculations of 〈Nd/(Nd −Nd+1)〉 and 〈Nd+1/(Nd −
Nd+1)〉 should be used with caution as they do not consider
the extra density of connections inside B(t) created by the
MEED recruitment process. Taking this bias into account
is not trivial and is the subject of future work. However,
in our MEED simulations we observe that Nd+1 � Nd for
large d, and, under such scenario, it is reasonable to make
the following simplification 〈k − d|d〉 ≈ 〈k − d〉ζ(d) .

Unfortunately, obtaining 〈k − d〉ζ(d) still requires know-

ing ζ
(d)
k , ∀k, d, which in turn requires knowing the degree

distribution. Note, however, that MEED simplifies to an al-
gorithm that always selects the node v? with the maximum
observed degree in N (B(t)) if 〈k− d(v?)|d(v?)〉 ≥ 〈k− d|d〉,
d = 1, . . . , d(v?). We denote this simplified MEED heuristic
Maximum Observed Degree (MOD).

We now see if we should expect to find the property 〈k−
d(v?)|d(v?)〉 ≥ 〈k − d|d〉, d = 1, . . . , d(v?) in real social net-
works. In what follows we show that, under certain con-
ditions, two of the most relevant social network models –
power law and Erös-Rényi random networks – have this de-
sired property. We later complement these findings with
simulation results in the Enron network. In Appendix E we
show that

〈k − d〉ζ(d) =

(
∂d+1

∂zd+1H(z)
)

(
∂d

∂zd
H(z)

)
∣∣∣∣∣∣
z=1

, d ≥ 1 , (7)

where H(z) =
∑
k z

kζk is the probability generating func-

tion (p.g.f.) of ζk, and ∂dH(z)/∂zd is the d-th derivative
of H(z) with respect to z. Next we use (14) to obtain ap-
proximations of 〈k − d〉ζ(d) for Erdös-Rényi and power law
networks.

8.1 Maximizing d-excess Degrees in
Erdös-Rényi Networks

In an Erdös-Rényi (ER) graph G(N, q) the degree distri-
bution is Binomially distributed, pk =

(
N−1
k

)
qk(1−q)N−1−k,

k = 1, . . . , N − 1. We now consider the case where t is small
enough such that ζk(t) ≈ pk. Then, the probability gener-
ating function of ζk is H(z) = (1 − q + qz)N−1. In such
scenario applying (14) yields

〈k − d〉ζ(d) =
(N − 1)!qd+1/(N − d− 2)!

(N − 1)!qd/(N − d− 1)!
= (N − d− 1)q.

As N � 1 we observe that the average d-excess degree
can be approximated by the average degree of the network,
〈k − d〉ζ(d) = 〈k〉, independent of d. Thus, if Nd+1 � Nd,
∀d, the scheduler can be degree agnostic and, thus, MOD
approximates MEED.

8.2 Maximizing d-excess Degrees in
Power Law Networks

In a power law network we cannot ignore the effect of t on
ζk(t). Hence, we consider ζk(t) to be power law distributed
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with an exponential cut-off. The exponential cut-off approx-
imates the behavior observed in Fig. 5. Moreover, in a vari-
ety of real world networks the degree distribution can be well
approximated by power law distributions with exponential
cut-offs [3, 38]. Let

ζk =
k−τCkt
Liτ (Ct)

, for k ≥ 1,

where Ct < 1 is a parameter that depends on B(t) and t
and the normalization factor Lih(x) =

∑∞
k=1 x

k/kh is the h-
th polylogarithm function of x. The probability generating
function of ζk assumes the form H(z) = Liτ (zCt)/Liτ (Ct).
In Appendix E we use H(z) to show that:

• If τ = 1, 〈k−d〉ζ(d) ≈
Ctd
1−Ct . and thus the node with the

largest observed degree should be recruited.

• If τ = 2, 〈k − d〉ζ(d) ≈ Γd , where d
1+1/d

< Γd
(

1−Ct
Ct

)
<

d+ 1 , which implies that for 〈k − (d+ a)〉ζ(d+a) > 〈k −
(d)〉ζ(d) , a = 2, 3, . . . and d = 1, . . .. Thus, at step t + 1
we should recruit the node v ∈ N (B(t)) with either the
largest or second largest value d(v). We believe that
these bounds can be improved to show that the node
with the largest observed degree should be recruited.
An interesting observation is that 〈k − d〉ζ(d) increases
with Ct and diverges as Ct → 1.

• With Ct → 1 and τ > 0: The case where Ct → 1 repre-
sents the case where {pk} is a pure power law distribu-
tion and t has little impact on the degree distribution of
B(t). This case is only of theoretical interest as no real
world network degree distribution can match an infinite
support power law degree distribution. In this scenario
〈k−d〉ζ(d) <∞, ∀d ≤ dτ −1e, and 〈k−dτe〉ζ(dτe) →∞.
This means that the node with observed degree degree
at least dτe should be recruited. We believe that this
result can be strengthen to show that 〈k − d|d〉 mono-
tonically increases with d.

Thus, we conclude that under the above networks MOD is
a good approximation to MEED.

8.3 Simulations, Excess Degree & MOD
The above analysis suggests that in some power law net-

works and in ER networks, 〈k−d|d〉 increases with d. An im-
portant question is whether we observe this phenomenon in
practice. Fig. 8 shows estimates of 〈k− d|d〉 for d ∈ {1, 2, 4}
obtained from simulating SI on the Enron network (these
estimates are averaged over 1,000 runs). We choose SI to
estimate 〈k − d|d〉 instead of MEED as under MEED very
few nodes with observed degrees greater than two remain in
N (B(t)), t > 0, thus making the estimates unreliable. In
the figure we observe that for t approximately in the range
{1, . . . , 2/3N} we have 〈k− 1|1〉 < 〈k− 2|2〉 < 〈k− 4|4〉 and
for t approximately in the range {2/3N + 1, . . . , N − 1} we
have 〈k−1|1〉 < 〈k−2|2〉 ≈ 〈k−4|4〉. Hence we expect that
MOD is a good candidate to approximate MEED on Enron
network.

Fig. 2b and Figs. 6a-f show that the MOD heuristic out-
performs, sometimes significantly, all previous lookahead one
algorithms on all social network datasets. We, however, still
notice a significant gap between the Oracle and MOD, which
we believe can be reduced using side information to improve
the estimation of 〈k − d〉ζ(d) .

9. SUMMARY, CONCLUSIONS &
RELATED WORK

We have considered the problem of providing an online al-
gorithm that, by recruiting nodes through their neighbors,
greedily maximizes the network cover of an online social net-
work. In our setting the network topology was unknown
and the only topological information available came from
the identity of the neighbors of already recruited nodes.

In this scenario, we have evaluated the efficacy of exist-
ing network sampling algorithms (BFS, DFS, RW) and pro-
posed a novel algorithm, Maximum Expected Excess Degree
(MEED), inspired by the greedy approximation to the min-
imum connected dominating set of Guha and Khuller [16],
which uses two-hop lookaheads (and, thus, denoted “Ora-
cle” in this work) to recruit at every step the node with the
largest excess degree. The MEED heuristic seeks to maxi-
mize the expected excess degree of nodes with the help of
degree distribution side information (if available). In the ab-
sence of degree distribution information, we have shown that
on random power law and Erdös-Rényi networks MEED can
be approximated by MOD (Maximum Observed Degree), a
greedy heuristic that at every step recruits the node with the
largest observed degree. We have shown through extensive
simulations on real world social network datasets that MOD
outperforms all other algorithms, often quite significantly.

We have also provided theoretical analysis of RWs (with
and without replacement) and of an algorithm inspired by
the Susceptible-Infected epidemic model, which we denoted
SI. Our theoretical analysis, to the best of our knowledge,
stands as a contribution on its own. We expect that our
formulas can aid practitioners in predicting the cover sizes of
these algorithms when degree distribution side information
is available.

Finally, we have uncovered a puzzling previously unknown
fact about DFS: DFS performs remarkably poorly on social
networks. In fact, DFS seems to avoid recruiting nodes with
large excess degrees. We have argued that this is due to its
tendency to keep large degree nodes at the bottom of the its
recruitment queue. We note in passing that this property
of DFS may find applications in undercover military opera-
tions where one seeks to recruit target individuals with the
minimum exposure (number of connections) to unrecruited
targets.

Related Work.
The connections between our work and the literature on

MCDS were already presented in Sec. 3. In this section we
review the remaining related literature. The work most re-
lated to ours is Maiya and Berger-Wolf [29]. Maiya and
Berger-Wolf presents a simulation study of the cover sizes
(among other metrics) of different algorithms, including BFS,
DFS, Oracle (which they denote Expansion Sampling), and
MOD (which they denote Sample Edge Count). Their work
considers social (e.g., Enron email) and technological (e.g.,
Amazon product co-purchase) networks. Surprisingly, their
conclusions are remarkably different than ours, arguing that
DFS outperforms BFS, RWs, and, most importantly, MOD.

Maiya and Berger-Wolf [29] shows the performance of
these algorithms, Figs. 4(e) and 4(f) in their work, on the
(non-social) HepTh and Amazon networks (see Sec. 4 for a
brief description of these datasets). In order to understand
the discrepancy of our conclusions, here we also include sim-
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ulations of these same two datasets. We show our results in
Figs. 9a and 9b. Note the remarkable difference to our social
network results in Figs. 2a-b and Figs.6a-f. Indeed, DFS ex-
periences a great improvement in performance while MOD
worsens dramatically.

To test whether the sudden improvement of DFS and de-
cline of MOD can be mostly attributed to the more struc-
tured nature of these two networks in respect to our social
networks, we artificially add randomness to these network by
randomly rewiring all endpoints (while making sure nodes
form a single connected component). Figs. 9c and 9d pro-
vide the results over these randomized networks. The results
are clear, adding randomness makes MOD incontestably su-
perior to all other algorithms (in HepTh it even matches
the performance of Oracle) and DFS is again noticeably in-
ferior. It remains an open question whether, in respect to
the network cover problem, most social networks are more
similar to “random networks” or more similar to “structured
networks”. Our datasets and simulation results suggest the
former.

In an earlier preliminary work (Lim et al. [45]) we pro-
posed SI under the name Randomized Expansion Sampling
(RXS) used to find the most central nodes in a network.
However, in Lim et al. we did not analyze SI cover size.
Random walks with lookahead have been the subject of a
number of works. Cooper and Frieze [8] studied the cover
time of RW. Mihail et al. [31] shows that a RW with one-hop
lookahead finds the majority of nodes in sublinear time in
an infinite configuration model with heavy tailed power law
degree distribution. Our analysis, however, shows that the
cover rate is at most linear for any value of t. Adamic et
al. [1] proposed a RW with two-hop lookahead and analyzed
its cover time on an infinite network. The fast cover of RWs
has been used in the context of decentralized search, e.g.,
when searching for content on unstructured P2P networks
(see [20, 24, 28, 44, 46] and references therein).

A closely related problem is the influence maximization
problem. The influence maximization problem considers
that each recruited individual invites its neighbors who can
be recruited with some probability. The purpose is to select
a set “influential” individuals, in order to cause a cascade of
recruitments in the network. Network topology is generally
assumed to be known [22]. This problem was first proposed
by Domingos and Richardson [9] (please refer to the review
in Kleinberg [23] for other references). Directly related to
online recruitment, Hartline et al. [17] and Bhattacharya et
al.[6] analyze the (paid) recruitment of consumers of a prod-
uct under the assumption of perfect network knowledge.

APPENDIX
A. RW & INDEPENDENT EDGE SAMPLING

APPROXIMATION
Let us assume that the random walk starts from a station-

ary distribution (πv = kv/(2M)). This is not too restrictive
assumption, since in the configuration model after the first
step the random walk is asymptotically – with respect to the
network size – in the stationary regime. And in the general
case, we can add auxiliary uniform jumps, which has been
shown [4] to significantly reduce mixing time.

We now show that if the random walk starts in steady
state, that is qv = πv, the expression using the complete
topological information (1) can be approximated by expres-

sion (2). It is enough to consider just one term in (1) cor-
responding to one node. Without loss of generality, we take
v = 1 and assume that nodes u = 2, ..., k1 + 1 are neighbors
of node 1. Partition the stationary distribution π as [π1 π2],
where π1 corresponds to node 1 and all its neighbors and
π2 corresponds to all the other nodes. Then, we need to
evaluate

π N (v)P = π2P
k
221.

Let us demonstrate that π2 properly normed is close to π̃2,
the quasi-stationary distribution of the substochastic matrix
P22:

π2P22 = λπ2.

Even though P22 is substochastic, if the graph is large enough,
P22 will be close enough to a stochastic matrix so that we
can apply perturbation theory. Let us consider the following
perturbation equation

(π
(0)
2 +επ

(1)
2 +...)(S22−εD) = (1−ελ(1)+...)(π

(0)
2 +επ

(1)
2 +...),

(8)
where S22 is the stochastic complement (it describes the
transitions of the censored Markov chain) and

εD = P21[I − P11]−1P12,

with ε as some scaling parameter. Equating terms in (8)
with ε0, we obtain

π
(0)
2 S22 = π

(0)
2 ,

from which it follows that π
(0)
2 = cπ2. Then, equating terms

in (8) with ε1, we obtain

π
(1)
2 S22 − π(0)

2 D = π
(1)
2 − λ(1)π

(0)
2 .

Multiplication the above equation by 1 from the right yields

λ(1) =
1

π21
π2D1,

and consequently,

λ ≈ 1− ελ(1) = 1− 1

π21
π2P21[I − P11]−1P121.

Next, from the defining equations for the stationary distri-
bution, we have

π2P21[I − P11]−1 = π1,

which leads to

λ ≈ 1− 1

π21
π1P121.

First, we note that π21 ≈ 1. And second, we note that
π1P121 is the number of links from the neighborhood set
N (1) to all the other links divided by the total number of
links. Since the number of links to the outside of the neigh-
borhood set is much large than the number of links inside
the set, λ ≈ (1−α1) and expression (1) can be approximated
by (2).

B. RW WITHOUT REPLACEMENT
Here we provide a brief description of the steps used to

derive the approximation in equations (3).
As in the case of the analysis of RW with replacement,

we assume that we sample nodes i.i.d. fashion according
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to the stationary distribution. Recall that Z(t) denotes the
number of edges not yet discovered at time t. Then, given
the history {Z(i), i = 0, 1, ..., t − 1} with Z(0) = M , the
probability that the node v is uncovered at time t is given
by

P [v ∈ W(t)|{Z(i), i = 1, ..., t− 1}]

=

t−1∏
i=0

1− 1

2Z(i)

kv +
∑

j∈Na(v)

kj

 ,

Similarly, given the history {Z(t), t = 0, 1, ..., t− 1}, we can
calculate the probability that the link (u, v) is yet uncovered
at time step t

P [link (u, v) is uncovered at t|{Z(i), i = 1, ..., t− 1}] =

t−1∏
i=0

(
1− ku + kv

2Z(i)

)
.

Viewing the link coverage problem as a subset coupon col-
lector problem, we obtain

〈Z(t)|{Z(i), i = 1, ..., t− 1}〉 =
∑

(u,v)∈E

t−1∏
i=0

(
1− ku + kv

2Z(i)

)
.

If we use the above equation recursively starting at Z(0) =
M and using the approximate value of 〈Z(t)〉, we obtain the
second equation in the approximate formulas (3).

C. BFS ON 2D AND 3D GRIDS
We first observe that BFS discovers the graph by consid-

ering progressively large spheres. At step k the boundary of
the set of discovered nodes is made by all nodes k hops away
from the first node. When nodes are embedded in a metric
space, the sphere has the property to be the solid with the
smallest surface for a given volume. This property justifies
intuitively why BFS discovers slowly new nodes.

We first consider an infinite 2D grid. For the 2D grid there
are 4t nodes at the boundary at step t, then every node on
the boundary contributes on the average to add 1 + 1/t new
nodes when it is visited, even if each of them has degree 4
and at least 2 neighbors not discovered.

For a 3D grid the boundary has size 2 + 4t2, then ev-
ery nodes contributes to discover (1 + 2(t + 1)2)/(1 + 2t2).
Here a node on the boundary has 6 neighbors and at least 3
not discovered at the begin of the step, but still its average
contribution converges to 1 as t diverges.

The reason for this slow increase is due to the fact that
1) nodes at the boundary have many connections (roughly
half of them, i.e. 〈k〉/2) to the interior of the sphere, i.e. to
already explored or discovered nodes, but also 2) the out-
going connections point to the same nodes. In fact almost
every node that is going to be discovered will be discov-
ered through 〈k〉/2 connections (those pointing towards the
sphere). Then, as the sphere becomes larger and the border
effects negligible, every node only contributes by discovering
one new node.

D. SI ALGORITHM VS. SI EPIDEMIC
The literature on SI epidemic models is so vast and rich

that we dedicate a section of our appendix to contrast our
results against previous works. We also provide limited

commentary on approximations of our equations. We first
note that the previous literature is often interested in a
continuous-time version of our SI model. Recall that in our
scenario t is the number of recruited nodes, while the related
literature considers t as time [34, 41], where at time t the
average number of “infected nodes” may be smaller or larger
than t.

However, it is an interesting exercise to try to connect the
framework provided by Pastor-Satorras and Vespignani [41]
with our approach.5 Consider a continuous-time SI epi-
demic on G. In an SI epidemic an infected node can be
thought play the role of a recruited node and susceptible
nodes play the role of non-recruited nodes. Let λ be the
per-unit time infection rate, that is, an infected node con-
taminates (recruits) a susceptible node during a time inter-
val ∆ → 0 with probability λ∆t, regardless of the state of
the infection. Let t′ denote the wall clock time of the SI
epidemic process and ρk(t′) be the probability that a node
with k links is infected. Then [41],

dρk(t′)

dt
= λk(1− ρk(t′))Θ(ρ(t′)), ∀k, (9)

where ρ(t′) = (ρ1(t′), . . . , ρN (t′)) and

Θ(ρ(t′)) = 〈k〉−1
∑
k

kpkρk(t′) (10)

is the probability that any given link points to an infected
node. Note that our t is the number of infected nodes, and
thus, ∑

k

Npkρk(t′) = t. (11)

Analytically adding the constraint (9) into the set of equa-
tions in (11) is not trivial, but it can be done numerically.
Let ρ′(t) be the solution of (11) with the added constraint (9).
Still, even with ρ′(t) it is unclear how the cover size can be
derived from (10). The main difficulty is the mapping be-
tween wall-clock time and number of recruited nodes. Our
formulation in Section 7 solves this problem by avoiding for-
mulation the problem in terms of wall-clock time.

E. THE EXPECTED D-EXCESS DEGREE
FROM THE P.G.F. OF ζK

Our analysis of 〈k − d|d〉 begins by breaking down 〈k −
d〉ζ(d) into the derivatives of the generating function of ζk:

〈k − d〉ζ(d) =

∞∑
k=d

(k − d)ζ
(d)
k

=

∞∑
h=0

h(h+ 1)ζ
(d−1)
h+d

〈k〉ζ(d−1) − (d− 1)

=

∑∞
h=0 h(h+ 1)(h+ 2)ζ

(d−2)
h+d∏d−1

i=d−2(〈k〉ζ(i) − i)

=

∑∞
h=0 h(h+ 1) · · · (h+ d)ζh+d∏d−1

i=0 (〈k〉ζ(i) − i)

=
1∏d−1

i=0 (〈k〉ζ(i) − i)
∂d+1H(z)

∂zd+1

∣∣∣∣
z=1

, (12)

5The authors would like to acknowledge N. Perra and A.
Baronchelli for helpful discussions on this topic.
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where H(z) =
∑
k z

kζk is the probability generating func-
tion of ζk. The first several equalities are a consequence of
successive applications of (6). The last equality comes from
the applying the d + 1-th derivative to H(z). Multiplying

both sides of (12) by
∏d−1
i=0 (〈k〉ζ(i) − i) yields

d∏
i=0

(〈k〉ζ(i) − i) =
∂d+1H(z)

∂zd+1

∣∣∣∣
z=1

, (13)

where 〈k〉ζ(0) =
∑
k kpk. Substituting (13) into the denom-

inator of the l.h.s. of (12) yields

〈k − d〉ζ(d) =

(
∂d+1H(z)

∂zd+1

)
(
∂dH(z)

∂zd

)
∣∣∣∣∣∣
z=1

, d ≥ 1. (14)

An important property of the polylogarithm function is that
for any constant C > 0,

∂Liτ (Cz)

∂z
=

Liτ−1(Cz)

z
.

IN what follows we consider three special cases: τ = 1,
τ = 2, and Ct → 1.

Case τ = 1: Let’s first consider the case τ = 1, which
implies that ζk is very heavy tailed. We use the fact that
Li1(a) = − log(1− a). With τ = 1 we have

∂H(z)

∂z
= − 1

log(1− Ct)
∂Li1(Ctz)

∂z
= − 1

log(1− Ct)(1− Ctz)
and thus,

∂dH(z)

∂zd
= − 1

log(1− Ct)
(d− 1)!Cdt
(1− Ct)d

,

which yields

〈k − d〉ζ(d) ≈
Ctd

1− Ct
,

showing that the d-excess degree grows linearly with d when
τ = 1. Then, we conclude that recruiting the node with
the largest observed degree from N (B(t)) maximizes the ex-
pected cover increase.

Case τ = 2: Another case of interest is τ = 2. In this case
note that

〈k − d〉ζ(d) ≈
∂d

∂zd
(− log(1− Ctz)/z)

∂d−1

∂zd−1 (− log(1− Ctz)/z)

∣∣∣∣∣
z=1

.

Using the Taylor series expansion of

− log(1− Ctz)/z =
∑
h≥1

Cht z
h−1

h

yields

〈k − d〉ζ(d) ≈ Γd ,

where

Γd =

∑
h≥d+2

Cht (h−1)!

h(h−d−2)!∑
h≥d+1

Cht (h−1)!

h(h−d−1)!

=

∑
m≥0

Cm+1
t (m+d+1)!

(m+d+2)m!∑
m≥0

Cmt (m+d)!

(m+d+1)m!

.

(15)

We now obtain upper and lower bounds of eq. (15) for any
d = 1, 2, . . .. To derive a lower bound note that

m+ d+ 2

(1 + 1/d)(m+ d+ 1)
< 1

and that (m + d)/(m + d + 1) < 1, for m = 0, 1, . . .. Us-
ing the above we decrease the numerator and increase the
denominator of (15) obtaining the lower bound:

Γd >

∑
m≥0

Cm+1
t (m+d+1)!

(1+1/d)(m+d+1)m!∑
m≥0

Cmt (m+d)!

(m+d)m!

=
Ctd

(1 + 1/d)(1− Ct)
.

Similarly, an upper bound of (15) can be obtained from
applying the inequalities

m+ d+ 1

(1 + 1/d)(m+ d)
≤ 1

and (m+ d+ 1)/(m+ d+ 2) < 1, for m = 0, 1, . . . into (15)

Γd <

∑
m≥0

Cm+1
t (m+d+1)!

(m+d+1)m!∑
m≥0

Cmt (m+d)!

(1+1/d)(m+d)m!

=
(d+ 1)Ct
(1− Ct)

.

Thus,

d

1 + 1/d
< Γd

(
1− Ct
Ct

)
< d+ 1

which implies that for 〈k − (d+ a)|d+ a〉 > 〈k − d〉ζ(d) , for
all a ≥ 2 and d = 1, . . .. This means that at step t + 1 we
should recruit the node v ∈ N (B(t)) with either the largest
value d(v) of all nodes in N (B(t)) or the second largest
value. We hypothesize that improving the above bounds
will reveal that node v should have the largest value of d(v).
Thus, if the above hypothesis holds, recruiting the node with
the largest observed degree from N (B(t)) maximizes the ex-
pected cover increase. An interesting observation is that
〈k − d〉ζ(d) increases with Ct and diverges as Ct → 1. We
now explore the case Ct → 1.

Case Ct = 1: The case when Ct = 1 represents the case
when {pk} is a pure power law distribution – that is, ζk =
k−τ/ζ(τ), where ζ(τ) is the Riemann zeta function with pa-
rameter τ (note that Liτ (1) = ζ(τ)) – and t has little impact
on the degree distribution of B(t). This case requires assum-
ing N → ∞ and t = o(N) and thus it is just of theoretical
interest as no real world network is an infinite power law
network. Because ζ(a) → ∞ for a ≤ 1 and ζ(a) < ∞ for
a > 1, we observe that

∂dτ−1eH(z)

∂zdτ−1e <∞

and

∂dτeH(z)

∂zdτe
→∞ .

Thus, 〈k − d|d〉 diverges for d = dτe and converges for d <
dτe. This implies that the expected d-excess degree of a
node with d = dτe recruited neighbors is infinite. Due to the
appearance of subtractions between two infinite quantities
we were unable to verify whether 〈k − d|d〉 → ∞ for all
d > dτe or, more importantly, whether or not 〈k − d −
1|d + 1〉/〈k − d|d〉 > 1 holds for all d > dτe. We, however,
hypothesize that 〈k − d|d〉 → ∞ for all d ≥ dτe. And again
we see that recruiting the node with the largest observed
degree from N (B(t)) maximizes the expected cover increase.
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(a) Epinions Network (b) Wiki-talk Network

(c) Youtube Network (d) EmailEU Network

(e) Slashdot Network (f) Flickr Network

Figure 6: Empirical average cover size 〈W (t)〉 of various social networks. Comparison between Oracle, RWnr, SI, BFS, DFS,
and MOD algorithms. x-axis in log-scale.
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(a) Enron Network (b) Gnutella Network

Figure 7: Mean field approximation of 〈N(B(t))〉 eq. (4) against the true average of 1,000 simulations on Enron and Gnutella networks.

Figure 8: (Enron Network) Average d-excess degree of B(t) in SI as a function of step t = 1, . . . , N − 1. Observe that 〈k − 4|4〉 is
consistently larger for all values of t than 〈k − 1|1〉 and 〈k − 2|2〉. Also note that this happens notwithstanding how little the average

degree of B(t) varies over t (blue dots).
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(a) HepTh (b) Amazon

(c) Randomized HepTh (d) Randomized Amazon

Figure 9: The two datasets in which DFS outperforms MOD. Comparison between the empirical average cover size 〈W (t)〉 of Oracle,
RWnr, SI, BFS, DFS, and MOD algorithms. Figs. 9a and 9b show the results on the original networks and Figs. 9c and 9d show the
results in their randomized counterparts. Note that when randomized, we see similar results seen in the social networks. Thus, the good
performance of DFS and poor performance of MOD are due to the peculiar network topology of these graphs. x-axis in log-scale.
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