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Fun fact:

The “Six Million Dollar Man” would 
cost $22,471,910.11 2002 dollars.

Motivation
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cerebellar disorders
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Neural Motor Prosthesis
* Many neurological disorders disrupt 
the ability to move or communicate, 
but leave cognition intact.

* Spinal cord injury:
~ 200,000 cases in the USA
11,000 new cases/year
mostly young

* Amyotrophic Lateral Sclerosis      
(ALS or Lou Gehrig’s disease)

20,000 cases
5,000 new cases/year

* Current assistive technology is 
limited
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Neural Motor Prosthesis
single and 
multi-
neuron
activity

Voluntary 
control 
signal

Decoding  
algorithm

Computer cursor
and

keyboard entry
Robotic arm Stimulation of Muscles,

Spinal Cord, and Brain

Source: Mijail Serruya
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From Science Fiction to Practice

“If I could find … a code which translates the relation 
between the reading of the encephalograph and the mental 
image …the brain could communicate with me.”

“Donovan’s Brain”, Curt Siodmak, 1942

Brain

“Mad” scientist Fun fact: 
Nancy Davis 
(Reagan)
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Key Questions
1. Measurement: What can we measure?  From 
where?  How?

2. Encoding: How is information represented in 
the brain?  

3. Decoding: What algorithms can we use to 
infer the internal “state” of the brain?  

4. Interface: How can we build practical 
interfaces and train people to use them?
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Computational Elements of the Brain

Single cells of
the nervous 
system

NEURON

100,000,000,000 in your brain
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Sensing the Brain

fMRI

~ 103 neurons

EEG
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MEG
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Optical imaging
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Source: Matt Fellows
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Computational Elements of the Brain

1/10 mm

2/1000’s second

Spikes

Source: David Sheinberg
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©John Donoghue 2001

Behavior and Neural Firing

Movement TargetMovement Target

Video monitorVideo monitor

Hand positionHand position

‘mouse’
Motions are 2D, fast, 
continuous, and “natural”.

30cm x 30cm 
workspace

Sensor in Motor Cortex
subject
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Implant Area

B

PMA

Central
Sulcus

Arcuate

SMA
MIMI

5 mm

MI arm area of motor cortex.
* know that activity of cells related to hand motion 
* accessible (in monkeys and humans)
* hypothesis: natural for controlling continuous 
motion of a prosthesis

PMA
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Cyberkinetics-Bionic Array
SEM image

100 “ideal” microelectrodes
10x10 grid, 
4x4 mm platform
1 or 1.5 mm long, Si shafts, 
Pt coated tips
Glass separation
Parylene insulation coating
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500 µm

Bone

Connector

Dura

White Matter

400 µm

Cortex

I

III
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VI

Arachnoid

Signal Out

J. Donoghue 1/2001

Bone cap

Implant Surgical Procedure 
skin
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off-line data processing

Off-line Reconstruction

neural 
signals

neural reconstruction

decoding
algorithm

hand position

observations

state estimate
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on-line direct neural control

Closed-loop Neural Control

Cursor under neural  control

visual feedback

observations

state estimate

decoding
algorithm

neural 
signals
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Cracking the Neural Code

Source: Rob Kass
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Cracking the Neural Code

Source: Zemel & McNaughton, NIPS2000 tutorial

rate = (# of spikes in time bin) / (length of time bin)

Related to the probability a cell will spike (fire) in a 
given time interval
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Encoding

)sin()cos(
)cos(

0

0

kykx

kk

hhh
hhz

θθ
θθ
++=

−+=
Georgopoulos et al (’82): (cosine tuning of single cells)

θ

Preferred direction θ

zk = firing rate,  θk = hand direction
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Encoding
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θ zk = firing rate,  θk = hand direction

Note that this is a 
generative model of 
neural firing:

z = f(θ) + noise

What should f(.) be?

Georgopoulos et al (’82): (cosine tuning of single cells)
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Encoding
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Moran & Schwartz (’99):

(Linear in velocity)
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Encoding

kykxk ybxbbz ++= 0

Kettner et al (’88):
(Linear in position)

Flament et al (‘88): Firing rate is also related to hand 
acceleration

y y

x x
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Encoding Summary
* Firing rate is approximately linearly related to 

position, velocity, acceleration (see Paninski et 
al. ‘04).
• Decoding models should exploit this.

* Firing rates of cells are not statistically 
independent (need to model the correlations) 
(Hatsopoulos et al ’98).

* Encoding models above don’t model 
uncertainty in hand motion or neural firing 
rates.
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Previous Decoding Algorithms 
* Population Vectors

Georgopoulos et al. (1986), Moran & Schwartz (1999),
Taylor et al. (2002)

* Linear Regression Methods
Wessberg et al.(2000), Serruya et al. (2002), Carmena et al. 
(2003)

* Artificial Neural Networks
Wessberg et al.(2000)

* Bayesian Inference (e.g. particle filter)
Gao et al. (2002), Brockwell et al. (2004), Wu et al. (EMBS’04)
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Decoding Methods

Direct decoding methods:

In contrast to generative encoding models:

Need a sound way to exploit generative models 
for decoding.

,...),( 1−= kkk zzfx vvv

)( kk xfz vv =
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priorlikelihood

)kinematics()kinematics|ratesfiring( ttt-j ppk=

)ratesfiringofhistory|kinematics( t-jtp

Bayesian 
Inference.
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)|( jtt Zxp −

vv
likelihood

posterior at t-1temporal prior

prior
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Bayesian 
approach.Learn rich 

probabilistic models 
of the encoding
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empirical “marginal” 
rate functions for

* position,
* velocity,
* etc.

…
…

“cell 8”

“cell 18”
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Approximation: 
Linear Gaussian 
(generative) model

…
…

),(~   ttjt QxHz vv Ν−

observation model

txH v
  

Full covariance Q matrix 
models correlations between 
cells.

H models how firing rates 
relate to full kinematic 
model (position, velocity, and 
acceleration).
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Approximation: 
Linear Gaussian 
(generative) model

…
…

likelihood
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),(~ 1 tttt WxAx −
vv N

Kalman Filter
Likelihood

Temporal prior

Posterior is also Gaussian

)|( tjt xzp vv
−

)|( 1−tt xxp vv

∫ −−−−= 1111 )|()|()|()|( ttttttttt xdZxpxxpxzpZxp vvvvvvvvv κ

),(~  tttt QxHz vv Ν

Kalman filter.  

Real-time, recursive, decoding.

observation model:

system model:
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Off-line Reconstruction

Estimated/decoded position 
(reconstruction)

Actual hand position

69 cells with 
1.5 minutes of 
training data 
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Accuracy

Population vector 75.0

Linear regression method 6.48

Kalman filter 4.75

Method MSE (cm2)

Continuous 2D hand motion (off-line reconstruction):

C
o r

rC
oe

ff
As number of cells increases:
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Mixture Model Likelihood

),|()()|(
1

iSxzpiSpxzp tkjk

N

i
tkjk === −

=
− ∑ vvvv

),(),|( ikitkjk QxHGiSxzp vvv ==−

* Model non-Gaussian probability.

* Training using EM algorithm.

* Decoding using Switching Kalman filter.

* Real-time decoding.
MSE: Kalman = 5.87 cm2

Switching Kalman = 5.39 cm2
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On-line Neural Control

Kalman filter 
decoder.  
Only 18 cells. 

Directly exploits 
the generative 
encoding model.

Neural control 
of a computer 
cursor in real 
time.

Brain substitutes 
for hand.

Target

Visual feedback
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On-line Task Performance
Kalman filter Linear regression

time targets rate time targets rate

17 60sec 38 38/min

30 105sec 55 31/min 58sec 24 25/min

36 57sec 28 29/min 42sec 15 21/min

69 45sec 28 37/min 60sec 22 22/min

# of cells

Average results:
Kalman filter 33.75 targets/min
Linear regression 22.67 targets/min

50% improvement
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Human Neural Prostheses

“One might think of the computer in 
this case as a prosthetic device.  Just 
as a man who has his arm amputated 
can receive a mechanical equivalent 
of the lost arm, so a brain-damaged 
man can receive a mechanical aid to 
overcome the effects of brain 
damage. … It makes the computer a 
high-class wooden leg.”

Michael Crichton,                   
The Terminal Man, 1972
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Humans?
* Implanted Electrodes

+ Good biocompatibility.
+ No motor impairment.
+ Can be explanted.
+ Can be re-implanted. 
+ Effective control signals in animal models.

- Invasive (benefits must outweigh risks of surgery).
- Limited to accessible regions.
- Requires a percutaneous connector.
- Bulky signal processing hardware.
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User

Monitor

Technician 
Monitors

Front-End 
Amplifier

Implant

BrainGate Cart 
with Neural 

Signal 
Processor and 

PCs

Cable

FDA approval granted.

Clinical trials ongoing.

Human Neural Prostheses
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Questions at the Interface
* training paralyzed subjects

* controlling “unnatural” devices
• cursors
• robotic arms, hands.
• mobile robots 

* controlling multiple devices 
• switching contexts
• adaptation

* Where should the computation take place 
(brain or computer)?

* What level of autonomous control/perception is 
needed?

(Unanswered)

DLR hand 
and arm.
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Current Directions
* Adaptive control algorithms

– Adaptive Kalman filter

* Studying neural adaptation
– Do the statistical properties of the cells adapt to more closely fit 

the model assumptions?

* Multi-modal control
– Will the population of cells maintain multiple distinct 

representations?  Will distinct sub-populations emerge for the 
different tasks? 

* Modeling joint probability 
– Non-Gaussian, non-linear high-dimensional; machine learning
– Can we “mine” the joint  to understand the neural code?
– What should    be?  What should    be?

),( tt zxp vv

xv zv
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Conclusions
We are on the verge of having biologically-embedded hybrid 
neural-computer systems.  

We have demonstrated continuous 2D cursor control and 
limited robotic control.

The work opens opportunities to study

* basic problems in machine learning and inference
* how the brain represents and processes information
* computational models of biological control
* novel hybrid control systems
* new robotic systems and prostheses

First applications will be for the severely disabled.  Promises 
new model for treating disease and injury of the CNS.
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