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W) Motivation

Fun fact:

The "Six Million Dollar Man" would
cost $22,471,910.11 2002 dollars.
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Neural Motor Prosthesis

* Many neurological disorders disrupt
cerebral palsy the ability to move or communicate,
but leave cognition intact.

cerebellar disorders

locked-in syndrome

* Spinal cord injury:
Qs oSlighy ~ 200,000 cases in the USA
spinal cord injury 11,000 new cases/year

spinal muscular mOSHY young

atrophies
1 * Amyotrophic Lateral Sclerosis
ALS (ALS or Lou Gehrig's disease)
muscular dystrophy 20,000 cases
e 5,000 new cases/year

multiple sclerosis s :
i * Current assistive technology is

veterans limited
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cerebral palsy
cerebellar disorders
locked-in syndrome
other stroke
spinal cord injury

spinal muscular
atrophies

ALS
muscular dystrophy
limb loss
multiple sclerosis

veterans
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Neural Motor Prosthesis

* Many neurological disorders disrupt 3%
the ability to move or communicate, ;

but leave cognition intact.

i

L

7

-.r: nl\
\

}

e N2
Spinal cord injury: 4

~ 200,000 cases in the USA
11,000 new cases/year : :
mostly young

* Amyotrophic Lateral Sclerosis
(ALS or Lou Gehrig's disease)

20,000 cases
5,000 new cases/year

* Current assistive technology is
limited
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Neural Motor Prosthesis
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w Neural Motor Prosthesis

single and
Decoding multi-
algorithm neuron
activity
Voluntary W’M}[’
control
signal H t “i m

Pa-Sa

—

Computer cursor . .
and Robotic arm Stimulation of Muscles,
keyboard entry Spinal Cord, and Brain

Source: Mijail Serruya
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From Science Fiction to Practice

- |4

Fun fact:
Nancy Davis
(Reagan)

"Mad" scientist

Brain

“If I could find ... a code which translates the relation
between the reading of the encephalograph and the mental

Image ...the brain could communicate with me.”
“Donovan’s Brain”, Curt Siodmak, 1942
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Key Questions

1. Measurement: What can we measure? From
where? How?

2. Encoding: How is information represented in
the brain?

3. Decoding: What algorithms can we use to
infer the internal "state” of the brain?

4. Interface: How can we build practical
interfaces and train people to use them?

Michael J. Black - September 2004 CMU RI Semi




e
Computational Elements of the Brain

Single cells of
the nervous
system

NEURON

100,000,000,000 in your brain

CMU RI Seminar
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o Sensing the Brain
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Computational Elements of the Brain

2/1000’s second

1/20 mm

Source: David Sheinberg

Michael J. Black - September 2004 CMU RI Semi




E E Behavior and Neural Firing

Hand position

Movement Target r

Video monitor

30cm x 30cm ¢

workspace

O

‘mouse’

Motions are 2D, fast,
continuous, and “natural”.

Sensor in Motor Cortex

©John Donoghue 2001

subject

Michael J. Black - September 2004 CMU RI Seminar




) Implant Area

e
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v
. entral
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g ‘Arcu e

MI arm area of motor cortex.
* know that activity of cells related to hand motion
* accessible (in monkeys and humans)
* hypothesis. natural for controlling continuous
motion of a prosthesis
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a? Cyberkinetics-Bionic Array

100 “ideal” microelectrodes
10x10 grid,

4x4 mm platform

1 or 1.5 mm long, Si shafts,
Pt coated tips

Glass separation

Parylene insulation coating
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_ Signal Out
Implant Surgical Procedure e

=

Arachnoid ‘ Dura

J. Donoghue 1/2001
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———————————————————————————————————————————————————————————————————————

neural observation

servatior decoding
signals

algorithm

state estimate

_______________________________________________________________________

m neural reconstruction ® hand position
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Closed-loop Neural Control

on-line direct neural control

VAR A N .
AR S neural observation
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LY signals

decoding
algorithm

state estimate
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visual feedback L]
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B Cursor under neural control
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a® Cracking the Neural Code

Trial number

133

89

Firing rate
44
7 .%

Source: Rob Kass
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Cracking the Neural Code

A
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Source: Zemel & McNaughton, NIPS2000 tutorial

rate = (# of spikes in time bin) / (length of time bin)

Related to the probability a cell will spike (fire) in a
given time interval
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_
Encoding

Georgopoulos et al ('82): (cosine tuning of single cells)
z, =h,+hcos(6, —0)
= h, +h, cos(g,) +h, sin(6,)

6 z, = firing rate, 6, = hand direction

N

Firing Rate

Preferred direction 6

~__

-T ' ' ' 0
Hand Direction
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|
Encoding

Georgopoulos et al ('82): (cosine tuning of single cells)
z, =h,+hcos(6, —0)
= h, +h, cos(g,) +h, sin(6,)

6 z, = firing rate, 6, = hand direction

N

Note that this is a
generative model of
neural firing:

Firing Rate

z = f(0) + noise
What should f(.) be?

- o0 =
Hand Direction
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.
Encoding

Moran & Schwartz ('99):
z, = h, +speed (h, cos(6,) +h, sin(4,))

= hO + thxk + hyVyk (Linear in veloci‘ry)

1.5
1

Vy g Vy
1
0.5 . I
0 [
vV, V
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_
Encoding

Kettner et al ('88):

L, = bo T bxXk T by Yk (Linear in posi’rion)

2
I y | I1
1.3 I

. 0.8

P I ] (LB
1 0.4

a5 '
02

0

X

Flament et al ('88): Firing rate is also related to hand
acceleration

X
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g

Encoding Summary

* Firing rate is approximately linearly related to

osition, velocity,
gl. '04). Y

acceleration (see Paninski et

» Decoding models should exploit this.

* Firing rates of ce

Is are not statistically

independent (need to model the correlations)

(Hatsopoulos et a

'98).

* Encoding models above don't model
uncertainty in hand motion or neural firing

rates.
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Previous Decoding Algorithms

* Population Vectors

Georgopoulos et al. (1986), Moran & Schwartz (1999),
Taylor et al. (2002)

* Linear Regression Methods

Wessberg et al.(2000), Serruya et al. (2002), Carmena et al.
(2003)

* Artificial Neural Networks
Wessberg et al.(2000)

* Bayesian Inference (e.q. particle filter)
Gao et al. (2002), Brockwell et al. (2004), Wu et al. (EMBS'04)
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Decoding Methods

Direct decoding methods:

% = f(Z.,7Z ;)
In contrast to generative encoding models:
Z, = T(X)

Need a sound way to exploit generative models
for decoding.
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= B2

Bayesian
Inference.

p(kinematics, |history of firing rates, ;)

=k p(firing rates; |kinematics, ) p(kinematics, )

likelihood prior
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N Approach:

probabilistic
formulation,

model
Hand kinematics -
m uncertainty
(%) p(X X |Z 7
p t p t1Tt—j "1 =1
Yi \
1
vy (Zt(_),- firing
system ,(2) | rate
Vy, | state =i | vector
a vector : (zero
% | (zero m | mean,
a mean) at Zi_i ] sqrt)
k " time t N
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N
Learn rich Bayesmn
probabilistic models GPPI"OC(Ch.

of the encoding

P(X1Z, 5 1) =] P(RI% 1) PR 41 Z, 1) %,
temporal prior posterior at t-1
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empirical "marginal”

. rate functions for
* position,
\ ell® * velocity,
* etc.
y
)
velocity (cell 18) > “cell 18"

i
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Approximation:
Linear Gaussian
(generative) model

observation model
L~ N(H %, Q)

Full covariance Q matrix
models correlations between
cells.

veloc ty[ ell 18)

H models how firing rates
relate to full kinematic
model (position, velocity, and

acceleration).
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Approximation:
Linear Gaussian
(generative) model

N likelihood
© p(Z; %) =

1 - _ Ao _
BGXD(—;(Zt o HXt)TQt 1(Zt o th))

velocity (cell 18)

o o — == L [l < o — = L < o — = L (=] [=] [=1 [=1 =] -
n in @ @ tn @ tn el - 9 b=
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Kalman Filter

Likelihood observation model:
p(zt—j |Xt) — 4~ W(Ht X Qt)

Temporal prior sl/stem model: R
p(xt‘xt_l) - X~ N (AX W)

Posterior is also Gaussian
p(%1Z) =K P(Z1%) [ P(RI% 1) P(% 41 Z, ) AR,

Kalman filter.

Real-time, recursive, decoding.
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w Off-line Reconstruction

69 cells with
> 1.5 minutes of

training data

@ Actual hand position

. Estimated/decoded position
(reconstruction)
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@ Accuracy

Continuous 2D hand motion (off-line reconstruction):

Method MSE (cm?)
Population vector 75.0
Linear regression method 6.48
Kalman filter 4.75

As number of cells increases:
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Mixture Model Likelihood

N
p(Z_; 1%)=> p(S, =i)p(Z ;%S =1)
=1

P(Z_; [ %, S, =1)=G(H,; X, Q,)

* Model non-Gaussian probability.
* Training using EM algorithm.
* Decoding using Switching Kalman filter.

* Real-time decoding. MSE: Kalman = 5.87 cm?

Switching Kalman = 5.39 cm?
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@ On-line Neural Control

Neural control Kalman filter
of a computer decoder.
cursor in real Only 18 cells.
time.

Q Directly exploits
Brain substitutes the generative
for hand. encoding model.

Q Target

. Visual feedback
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@ On-line Task Performance

Kalman filter Linear regression

# of cells
time | targets | rate time | targets | rate

17 60sec 38 38/min

30 105sec 55 31/min | 58sec 24 25/min

36 57sec 28 29/min | 42sec 15 21/min

69 45sec 28 37/min | 60sec 22 22/min

Average results: 50% improvement
Kalman filter 33.75 targets/min
Linear regression 22.67 targets/min
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® Human Neural Prostheses

“One might think of the computer In

this case as a prosthetic device. Just THE

as a man who has his arm amputated TERMINAL
can receive a mechanical equivalent MAN

of the lost arm, so a brain-damaged AHOVEL §Y

man can receive a mechanical aid to MICHAEL CRICHTON

overcome the effects of brain
damage. ... It makes the computer a
high-class wooden leg.”

Michael Crichton,
The Terminal Man, 1972
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Humans?

* Implanted Electrodes
+ Good biocompatibility.
+ No motor impairment.
+ Can be explanted.
+ Can be re-implanted.
+ Effective control signals in animal models.

- Invasive (benefits must outweigh risks of surgery).
- Limited to accessible regions.

- Requires a percutaneous connector.

- Bulky signal processing hardware.
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® Human Neural Prostheses

FDA approval granted.

//,/ " - i
T/}/ d |
User ‘

Clinical trials ongoing.

BrainGate Cart ]
with Neural Z7
Signal <y
Processor and ./
PCs

Front-End
Amplifier

g "
’ Cyberkinetics e
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gﬁ% (Unanswered)

‘Questions at the Interface

* training paralyzed subjects

DLR hand

* controlling "unnatural” devices
and arm.

* cursors
- robotic arms, hands.
- mobile robots

* controlling multiple devices
* switching contexts
- adaptation

* Where should the computation take place
(brain or computer)?

* What level of autonomous control/perception is
needed?
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ae Current Directions

* Adaptive control algorithms
- Adaptive Kalman filter

* Studying neural adaptation

- Do the statistical properties of the cells adapt to more closely fit
the model assumptions?

* Multi-modal control

- Will the population of cells maintain multiple distinct
representations? Will distinct sub-populations emerge for the
different tasks?

* Modeling joint probability p(X;,Z;) #
- Non-Gaussian, non-linear high-dimensional; machine learningg 4“5, )
- Can we "mine" the joint to understand the neural code? ﬁ\“
- What should X be? What should Z be? ’

'1;.1 "‘i
& *ua*ﬁ'ﬂ"w"}"ﬁ‘ ol
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Conclusions

We are on the verge of having biologically-embedded hybrid
neural-computer systems.

We have demonstrated continuous 2D cursor control and
limited robotic control.

The work opens opportunities to study

* basic problems in machine learning and inference

* how the brain represents and processes information
* computational models of biological control

* novel hybrid control systems

* new robotic systems and prostheses

First applications will be for the severely disabled. Promises
new model for treating disease and injury of the CNS.
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