
Navlab Core Technologies

Jay Gowdy and Rob Maclachlan
 SAIC Robotics Institute

SAIC?

● Center for Intelligent Robotics and Unmanned
Systems (CIRUS)

– Was in Denver

– Now split between Mclean, VA and here

– Soon to be in the Collaborative Innovation Center

● 4 employees in Pittsburgh by December

– Including myself, Karl Kluge, Chris Urmson

● Room for more...

● If you are looking for a big, friendly robotics
company for collaboration, talk to me.

Overview

● Navlab: an architectural history

● ModUtils: supporting robot module development

● DATMO: A current core algoritm

● Wrap-up

Initial Architecture

● 1985-1988, CODGER

– Central database

– Geometric information

– All communications through the
data base

CODGER

Road
Detector

Road Geometry

Driver

Where is the road?

Navlab 1: Minimal Architecture

● 1989-1990

● Usually one perception
algorithm and a controller

● Eventually developed hand
built architecture

● Simple, point to point TCP/IP
messaging

– TCX -> IPT

● Annotated maps for “cold
beverage” delivery

D**N Architecture

● 1990-1994, UGV Demo I, II

● DAMN Architecture

– Combine multiple perception
algorithms

– Sensorimotor behaviors

– Arc voting

● Minimal scripting on top

D* Planner

Obstacle
avoidance

DAMN
Arbiter

Vehicle
Interface

Scripting

Arc Votes

Behavior weights

Vehicle commands

Highway Navigation

● No Hands Across America,
AHS, 1994-1997

● Single purpose architecture

– Servoing for lateral
control

– Servoing for longitudinal
control

– Reparameterize as
necessary

– Single purpose,
single process

● Drove at highway speeds

Today...

● NavLab 11

What is an architecture?

● What does “architecture” mean anyway?

– A blue print?

– A grand philosophy?

● The hope:
– Blueprint architectures standardizing over

life of a project
– Grand unified theory architectures

standardizing over tasks (or all of robotics)

● Permanent, pervasive standards will lead
to massive code reuse
– Has this ever been demonstrated?

Modules, not Architectures

● The Navlab approach

– Tasks drive algorithms, algorithms drive architectures

● Concentrate on

– Support for algorithmic module development

– Support for seamless transition of modules from
“architecture” to “architecture”.

● Provide an architectural toolkit to build
systems of loosely coupled modules

● Using the “architectural” support does
not trump the “module development”
support

ModUtils

● A meta-architectural C++ toolkit for developing
and integrating robot software modules

● Provides a common Module framework which
developers fill in with algorithm and display code

● All input and output to the “system” is done
through reconfigurable interfaces

● Modules are unaware of what lies on the other
side of the interfaces

● Modules are isolated from the architecture in
which they reside

Reconfigurable Interfaces

● Modules view the system through reconfigurable
interfaces built using ModUtils

– Abstract API

– Suite of instances available
at runtime

– Configured through specification
strings read from configuration
source

● Consistent means of isolating modules from the
architecture in which they reside

Interface A

Interface B

Interface C

Example: DATMO

● Detection and Tracking of Moving Objects
● Abstract data sources, destinations

DATMO

Vehicle StateLaser Scanner

Time
Source

Tracked Objects

Configuration
Source

Module Development Architecture
● Stand-alone development: Single proces
● All data read from time tagged files
● Debug with local GUI, output to file for post

analysis

DATMO

Vehicle StateLaser Scanner

Time
Source

Tracked Objects

Configuration
Source

File File

File

File

ModUtils Support
● Provides standard abilities for writing time-

stamped data, and accessing by time.

● Provides an extremely flexible configuration file
system, accessed through an abstract
“Configuration Source”

● Provides an abstract interface to time

– In module development, time can be driven by the
data.

● Provides utilities for creating 2D, 3D, and image
overlay debugging displays

Integrated Architecture

● Read, output data via shared memory/UDP
● Access central configuration server via TCP/IP
● Looks the same to the module algorithm

DATMO

Vehicle StateLaser Scanner

Time
Source

Tracked Objects

Configuration
Source

Shmem Shmem

Shmem

Clock TCP/IP

ModUtils Communications Support

● Interprocessor shared memory

– For “signals”, Sys V shared memory or UDP

– 99% of communications in our systems

● Simple messaging toolkit

– For “symbols”, TCP/IP

– Mainly used at startup and shutdown

● Central database of configuration information

– For “information,” implemented with messaging.

– Not just a passive repository, users can “attach” and
“set” values

– A general back door for communications

A Typical ModUtils “Architecture”

Processor A Processor A

FooBar

Repository
Manager

Shared Memory
Manager

Sys V
Shmem

Sys V Shmem

Shared Memory
Manager

Bletch

Sys V Shmem

Unix
Socket

Unix Socket

UDP Socket

TCP/IP
Socket

Repository Manager:
● Has all configuration information
● Acts as a blackboard
● Runs python scripts to manage the processes

Wrap Up

● Since DATMO is written with ModUtils

– Able to move from a single Sick to multiple fused
sicks for 360 degree awareness

– Able to integrate it rapidly on the GD XUV

● ModUtils is best for me, is it good in general?

● ModUtils is open source and available

– User manual:
http://geeveegie.msl.ri.cmu.edu/jayg/ModuleDoc

– Code snapshot:
http://geeveegie.msl.ri.cmu.edu/jayg/ModUtils.tgz

