

vSLAM: A low-cost approach to visual localization for consumer robotics

Paolo Pirjanian, Chief Scientist Evolution Robotics, Inc. September 5, 2003

Credits to the Evolution Team

In particular thanks to:

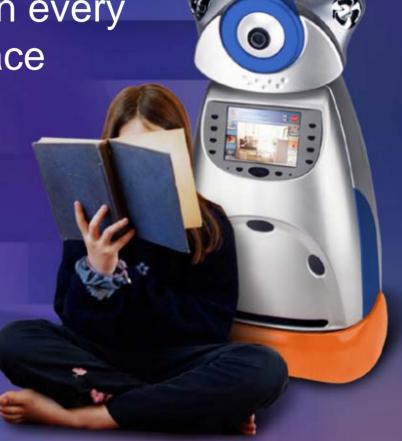
Dr. Mario Munich,

Dr. Luis Goncalves,

Dr. Niklas Karlsson,

Dr. Jim Ostrowski, and

Dr. Enrico Di Bernardo.


The Natural Evolution of Robotics

Our Vision

 A Personal Robot in every Home and Workplace

Our Mission

 To Develop the Core Technologies for Building Practical Personal Robots

 Help manufacturers to develop robotic products for the mass market in the next 2-4 years

Our Strategy

Software

Embedded Solutions

Prototypes

Our Challenges

- Challenge 1: Cost efficiency
- Challenge 2: Reliability (Real real-world robotics)
- Challenge 3: Power efficiency
- Challenge 4: Test and validation

Our Challenges

- Challenge 1: Cost efficiency
- Challenge 2: Reliability (Real real-world robotics)
- Challenge 3: Power efficiency
- Challenge 4: Test and validation
- Ultimate challenge: Meeting expectations of customers and investors.

Focus of talk

- Breakthrough solutions (few technical details ®)
 - Reliable vision for object recognition and navigation
 - Low-cost, vision-based SLAM (< \$100)</p>

Challenge 1: Cost efficiency

- Price of consumer robotic products:
 from several hundred USD to few thousand USD
- Production cost = 30%- 40% of retail price
 - Includes: product, manuals, manufacturing, packaging, marketing,
 ...
 - Example:
 - Retail price: \$500
 - Landed cost: \$150-\$175
 - HW cost: \$100-\$125
 Includes CPU board, connectors, sensors, actuators, gears, batteries, charger, chassis, appliance related components (e.g., vacuum),...
- How much hardware can you get for a couple of hundred USD?

Challenge 2: Reliability

- Consumer robotic products must operate in unknown environments; home, office, stores, factories, ...
 - E.g., how does odometry behave on plush carpet?
 - How does vision work with lighting changes, reflections, moving objects, etc?
- Work for hours, days, weeks, months without (too much) human intervention
- Imagine an autonomous robot in a home or office:
 - Reliable vision with such huge variation in lighting
 - Obstacle avoidance dealing with table tops, chair/table legs, glass, stairs,
 ...
 - SLAM in cluttered environments
 - Voice recognition across the room
 - **–** ...

Challenge 3: Power efficiency

- Low-power actuators
- Low-power sensors
- Power management including self-charging
- Low-power computing, e.g., going from Pentium-grade computing to embedded

•

Challenge 4: Test and validation

- How do you characterize and verify a system?
- Can we learn from the automotive industry?
- Can we automate testing?

What are we left with?

- Imagine solving SLAM, Avoidance, Speech, Vision, reliably.
- Now imagine solving all these with low-cost sensors, low-cost computing, and in unknown, unstructured environments.
- What can we do?

One thing we can do is ...

to use vision!

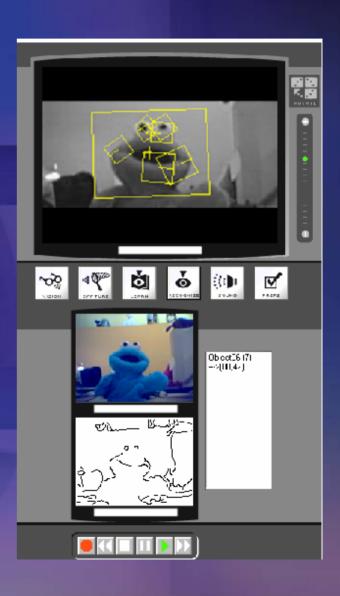
- Low cost (\$10 camera compared to \$1000 LRF or \$100-200 sonars)
- Images contain rich information
- But extracting the info requires reliable algorithms
- And more computation, i.e., need more computing which could add cost unless we optimize code and hardware

What do we have?

- Object Recognition
 - Reliable to lighting, scaling, rotation, occlusions
 - Useful for many applications
- Vision-based SLAM (vSLAM)
 - Low-cost solution
 - Reliable in realistic settings
 - Adaptive to short-term and long-term changes

What else do we need? (for another time)

- Reliable, low-cost obstacle detection
 - Avoidance is considered done
- Reliable, low-cost voice recognition
 - From 3 meters distance and background noise
- Other human-robot interaction
 - Follow me, come here, pick that up, face recognition, ...
- Reliable, low-cost manipulation
 - Pick and place, fetch, play chess, etc.
- Low-cost, low-power computation boards
 - GHz computing at < \$50


Object Recognition

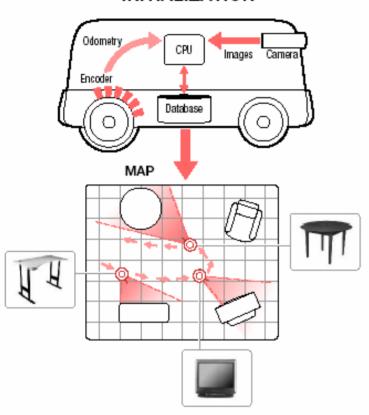
Approach:

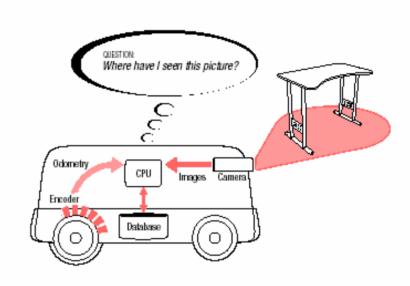
- Extracts 1000 SIFT features of each object. A very small subset of those features with the right configuration is required for identification of the object.
- Estimation: Identification can provide the name of the object and the full pose of the camera with respect to the object.

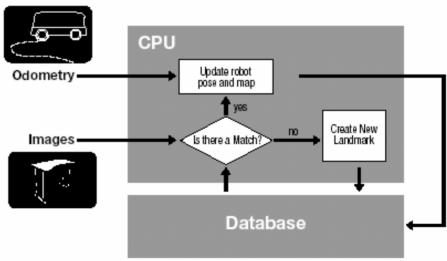
Example applications

- Visual servoing, navigation, docking
- Edutainment: Reading book, visual programming
- Manipulation
- SLAM

Sony Aibo uses ER Vision


Visual Simultaneous Localization & Mapping




- Fuses data from single USB camera and odom
- Use sparse range of unique features. Dense range is not necessary.
- Builds map from scratch and adaptively updates map with new landmarks as required.
- Creates very unique landmarks which solve the data association problem
- Very robust handling of robot "kidnapping"
- Robust to transient and permanent changes in dynamic environments
- Accuracy of about +/- 25cm in x,y, and about 5 degrees in heading

INITIALIZATION

Definitions

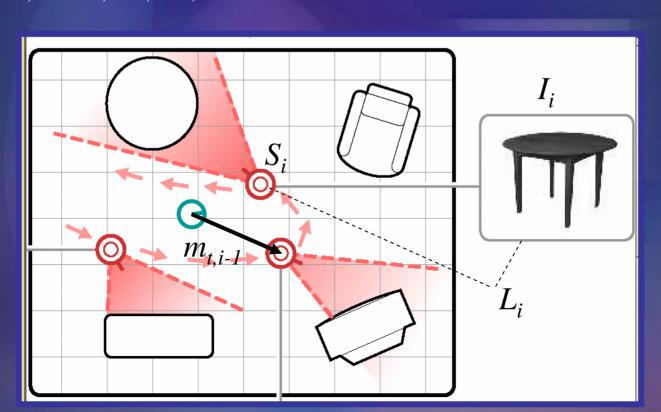
• $L_i = \langle I_i, S_i \rangle$

Landmark i.

I_i

Image corresponding to L_i

• $S_i = (x_i, y_i, \theta_i)$

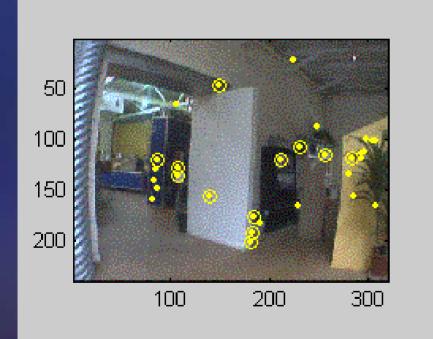

Pose of robot when image I_i was acquired

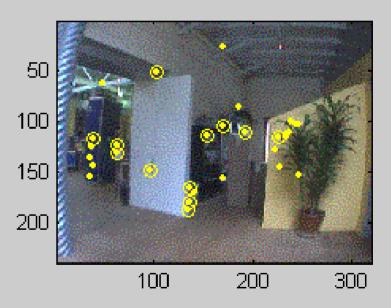
• $M = \langle L_1, L_2, ..., L_k \rangle$

Map of k unique landmarks

• $m_{t,l} = \Delta(x_{t,-l}, y_{t,-l}, \theta_{t,-l})$

Visual pose measurement relative to L_i




Relative pose measurements

Current Image

Best Database Match (80 cm off)

Representative Images

Featureless environments

vSLAM Issues

- Training time/installation cost: 3000-4000 m² facility. Ideally want to use an existing map of the facility
- No metric/occupancy map
 - User interface: Topological map with visual thumbnails? Metric map? Hybrid map?
 - Path-planning: Topological path
- Navigation in the dark
 - Headlights?
 - Use of IR cameras?

ER Software Platform (ERSP)

- Architecture that runs on many platforms
- Has been embedded
- Cross OS (3 OSs)
- Highly independent of robot

(Near) Future work

- Develop < \$100 navigation system
 - SLAM
 - Path planning/execution
 - Obstacle detection/avoidance
 - Hazard detection/avoidance
 - Self-docking and charging

Contact information

- www.evolution.com
 - Whitepapers, videos, press releases
 - Job descriptions
 - Sales
- paolo@evolution.com
 - Interested in collaboration
 - Licensing of technologies
- IROS Exhibition, Oct 2003 in Las Vegas
 - Demo of vSLAM and other navigation