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Reinforcement Learning

Models agent interacting with its environment .

1. Agent receives information about its state .

2. Agent chooses action or control based on state-
information.

3. Agent receives a reward .

4. State is updated.

5. Goto ?? .
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Reinforcement Learning

• Goal: Adjust agent’s behaviour to maximize long-term
average reward.

• Key Assumption: state transitions are Markov .
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Chess

• State: Board position.

• Control: Move pieces.

• State Transitions: My move, followed by opponent’s
move.

• Reward: Win, draw, or lose.
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Call Admission Control

Telecomms carrier selling bandwidth: queueing problem.

• State: Mix of call types on channel.

• Control: Accept calls of certain type.

• State Transitions: Calls finish. New calls arrive.

• Reward: Revenue from calls accepted.
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Cleaning Robot

• State: Robot and environment (position, velocity, dust
levels, . . . ).

• Control: Actions available to robot.

• State Transitions: depend on dynamics of robot and
statistics of environment.

• Reward: Pick up rubbish, don’t damage the furniture.
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Summary

Previous approaches:

• Dynamic Programming can find optimal policies in
small state spaces.

• Approximate Value-Function based approaches currently
the method of choice in large state spaces.

• Numerous practical successes, BUT

• Policy performance can degrade at each step.
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Summary

Alternative Approach:

• Policy parameters θ ∈ RK, Performance: η(θ).

• Compute∇η(θ) and step uphill (gradient ascent).

• Previous algorithms relied on accurate reward baseline
or recurrent states .
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Summary

Our Contribution:

• Approximation∇βη(θ) to∇η(θ).

• Parameter β ∈ [0, 1) related to Mixing Time of
problem.

• Algorithm to approximate∇βη(θ) via simulation (POMDPG).

• Line search in the presence of noise.
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Partially Observable Markov Decision
Processes (POMDPs)

States: S= {1, 2, . . . , n} Xt∈ S
Observations: Y= {1, 2, . . . ,M} Yt∈ Y

Actions or Controls: U= {1, 2, . . . , N} Ut∈ U

Observation Process ν: Pr(Yt = y|Xt = i)= νy(i)

Stochastic Policy µ: Pr(Ut = u|Yt = y)= µu(θ, y)

Rewards: r : S → R

Adjustable parameters: θ ∈ RK
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POMDP

Transition Probabilities:

Pr(Xt+1 = j|Xt = i, Ut = u) = pij(u)
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The Induced Markov Chain

• Transition Probabilities:

pij(θ)=Pr (Xt+1 = j|Xt = i)

=Ey∼ν(Xt) Eu∼µ(θ,y) pij(u)

• Transition Matrix:

P (θ) = [pij(θ)]
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Stationary Distributions

q = [q1 · · · qn]′ ∈ Rn is a distribution over states.

Xt∼ q
⇒ Xt+1∼ q′P (θ)

Definition: A probability distribution π ∈ Rn is a
stationary distribution of the Markov chain if

π′P (θ) = π′.
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Stationary Distributions

Convenient Assumption: For all values of the
parameters θ, there is a unique stationary distribution
π(θ).

Implies the Markov chain mixes :
For all X0, the distribution of Xt approaches π(θ).

Inconvenient Assumption: Number of states n

“essentially infinite”.

Meaning: forget about storing a number for each state, or
inverting n× n matrices.
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Measuring Performance

• Average Reward:

η(θ) =
n∑
i=1

πi(θ)r(i)

• Goal: Find θ maximizing η(θ).
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Summary

• Partially Observable Markov Decision Processes.

• Previous approaches: value function methods.

• Direct gradient ascent

• Approximating the gradient of the average reward.

• Estimating the approximate gradient: POMDPG.

• Line search in the presence of noise.

• Experimental results.
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Approximate Value Functions

• Discount Factor β ∈ [0, 1), Discounted value of state
i under policy µ:

Jµβ (i) = Eµ

[
r(X0) + βr(X1) + β2r(X2) + · · ·

∣∣X0 = i
]
.

• Idea: Choose restricted class of value functions
J̃(θ, i), θ ∈ RK, i ∈ S (e.g neural network with
parameters θ).
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Policy Iteration
Iterate:

• Given policy µ, find approximation J̃(θ, ·) to Jµβ .

• Many algorithms for finding θ: TD(λ), Q-learning,
Bellman residuals, . . . .

• Simulation and non-simulation based.

• Generate new policy µ′ using J̃(θ, ·):

µ′u∗(θ, i) = 1⇔ u∗ = argmaxu∈U
∑
j∈S

pij(u)J̃(θ, j)
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Approximate Value Functions

• The Good:

? Backgammon (world-champion), chess (International
Master), job-shop scheduling, elevator control, . . .

? Notion of “backing-up” state values can be efficient.

• The Bad:

? Unless
∣∣∣J̃(θ, i)− Jµβ (i)

∣∣∣ = 0 for all states i, the new
policy µ′ can be a lot worse than the old one.

? “Essentially Infinite” state spaces means we are likely
to have very bad approximation error for some states.
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Summary

• Partially Observable Markov Decision Processes.

• Previous approaches: value function methods.

• Direct gradient ascent.

• Approximating the gradient of the average reward.

• Estimating the approximate gradient: POMDPG.

• Line search in the presence of noise.

• Experimental results.
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Direct Gradient Ascent

• Desideratum: Adjusting the agent’s parameters θ

should improve its performance.

• Implies. . .

• Adjust the parameters in the direction of the
gradient of the average reward:

θ := θ + γ∇η(θ)
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Direct Gradient Ascent: Main Results

1. Algorithm to estimate approximate gradient(∇βη) from a
sample path.

2. Accuracy of approximation depends on parameter of the
algorithm (β); bias/variance trade-off.

3. Line search algorithm using only gradient estimates.
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Related Work
Machine Learning: Williams’ REINFORCE algorithm (1992).

• Gradient ascent algorithm for restricted class of MDPs.
• Requires accurate reward baseline, i.i.d. transitions.

Kimura et. al. , 1998: extension to infinite horizon.

Discrete Event Systems: Algorithms that rely on recurrent
states. MDPs: (Cao and Chen, 1997), POMDPs: (Marbach and

Tsitsiklis, 1998).

Control Theory: Direct adaptive control using derivatives
(Hjalmarsson, Gunnarsson, Gevers, 1994), (Kammer, Bitmead,

Bartlett, 1997), (DeBruyne, Anderson, Gevers, Linard, 1997).
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Approximating the gradient
Recall: For β ∈ [0, 1), Discounted value of state i is

Jβ(i) = E
[
r(X0) + βr(X1) + β2r(X2) + · · ·

∣∣X0 = i
]
.

Vector notation: Jβ = (Jβ(1), . . . , Jβ(n)).

Theorem: For all β ∈ [0, 1),

∇η(θ)= βπ′(θ)∇P (θ)Jβ + (1− β)∇π′(θ)Jβ.

= β∇βη(θ)︸ ︷︷ ︸
estimate

+ (1− β)∇π′(θ)Jβ︸ ︷︷ ︸
→0 asβ→1

.
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Mixing Times of Markov Chains

• `1-distance: If p, q are distributions on the states,

‖p− q‖1 :=
n∑
i=1

|p(i)− q(i)|

• d(t)-distance: Let pt(i) be the distribution over states
at time t, starting from state i.

d(t) := max
ij
‖pt(i)− pt(j)‖1

• Unique stationary distribution ⇒ d(t)→ 0.
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Approximating the gradient

Mixing time: τ ∗ := min
{
t : d(t) ≤ e−1}

Theorem: For all β ∈ [0, 1), θ ∈ Rk,

‖∇η(θ)−∇βη(θ)‖ ≤ constant× τ ∗(θ)(1− β).

That is, if 1/(1− β) is large compared with the mixing
time τ ∗(θ),∇βη(θ) accurately approximates the gradient
direction∇η(θ).
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Estimating ∇βη(θ): POMDPG

Given: parameterized policies, µu(θ, y),β ∈ [0, 1):

1. Set z0 = ∆0 = 0 ∈ RK.

2. for each observation yt, control ut, reward r(it+1) do

3. Set zt+1 = βzt +
∇µut(θ, yt)
µut(θ, yt)

(eligibility trace)

4. Set ∆t+1 = ∆t + 1
t+1 [r(it+1)zt+1 −∆t]

5. end for
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Convergence of POMDPG

Theorem: For all β ∈ [0, 1), θ ∈ RK,

∆t→ ∇βη(θ).
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Explanation of POMDPG

Algorithm computes:

∆T =
1

T

T−1∑
t=0

∇µut
µut

(
r(it+1) + βr(it+2)+· · ·+βT−t−1r(iT)

)︸ ︷︷ ︸
Estimate of discounted value ‘due to’ action ut

• ∇µut(θ, yt) is the direction to increase the probability of
the action ut.

• It is weighted by something involving subsequent
rewards, and

• divided by µut: ensures “popular” actions don’t dominate
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POMDPG: Bias/Variance trade-off

∆t
t→∞−−→ ∇βη(θ)

β→1−−→ ∇η(θ) .

• Bias/Variance Tradeoff: β ≈ 1 gives:

? Accurate gradient approximation (∇βη close to ∇η),
but

? Large variance in estimates ∆t of∇βη for small t.



33

POMDPG: Bias/Variance trade-off

∆t
t→∞−−→ ∇βη(θ)

β→1−−→ ∇η(θ) .

• Recall: 1/(1− β) ≈ τ ∗(θ) (mixing time).

? Small mixing time ⇒ small β ⇒ accurate gradient
estimate from short POMDPG simulation .

? Large mixing time ⇒ large β ⇒ accurate gradient
estimate only from long POMDPG simulation .

• Conjecture: Mixing time is an intrinsic constraint on
any simulation-based algorithm.
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Example: 3-state Markov Chain

Transition Probabilities:

P (u1) =

 0 4/5 1/5
4/5 0 1/5
0 4/5 1/5

 P (u2) =

 0 1/5 4/5
1/5 0 4/5
0 1/5 4/5


Observations: (φ1(i), φ2(i)):
State 1: (2/3, 1/3) State 2: (1/3, 2/3) State 3: (5/18, 5/18)
Parameterized Policy: θ ∈ R2

µu1(θ, i)=
e(θ1φ1(i)+θ2φ2(i))

1 + e(θ1φ1(i)+θ2φ2(i))
µu2(θ, i)= 1− µu1(θ, i)

Rewards: (r(1), r(2), r(3)) = (0, 0, 1)
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Bias/Variance Trade-off

Relative norm difference =
‖∇η −∆T‖
‖∇η‖

.
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Bias/Variance Trade-off
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Summary

• Partially Observable Markov Decision Processes.

• Previous approaches: value function methods.

• Direct gradient ascent.

• Approximating the gradient of the average reward.

• Estimating the approximate gradient: POMDPG.

• Line search in the presence of noise.

• Experimental results.
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Line-search in the presence of noise

• Want to find maximum of η(θ) in direction∇βη(θ).

• Usual method: find 3 points
θi = θ + γi∇βη(θ), i = 1, 2, 3,
with γ1 < γ2 < γ3 such that:
η(θ2) > η(θ1), η(θ2) > η(θ3) and interpolate.

• Problem: η(θ) only available by simulation (e.g. ηT(θ)),
so noisy:

lim
θ1→θ2

var [sign (ηT(θ2)− ηT(θ1))] = 1
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Line-search in the presence of noise
• Solution: Use gradients to bracket (POMDPG).
∇βη(θ1) · ∇βη(θ) > 0, ∇βη(θ2) · ∇βη(θ) < 0

• Variance independent of ‖θ2 − θ1‖.
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Example: Call Admission Control

Telecommunications carrier selling bandwidth: queueing
problem.
From (Marbach and Tsitsiklis, 1998).

• Three call types, with differing arrival rates (Poisson),
bandwidth requirements, rewards, holding times (exponential).

• State = observation = mix of calls.

• Policy = (squashed) linear controller.
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Direct Reinforcement Learning: Call
Admission Control
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Direct Reinforcement Learning: Puck World

• Puck moving around mountainous terrain.

• Aim is to get out of a valley and on to a plateau

• reward = 0 everywhere except plateau (=100)

• Observation = relative location, absolute location,
velocity.

• Neural-Network Controller

• Insufficient thrust to climb directly out of valley, must
learn to “oscillate”.
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Direct Reinforcement Learning: Puck World
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Direct Reinforcement Learning

• Philosophy:

? Adjusting policy should improve performance.
? View average reward as function of policy parameters:
η(θ).

? For suitably smooth policies: ∇η(θ) exists.
? Compute∇η(θ) and step uphill.
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Direct Reinforcement Learning

• Main results:

? Approximation∇βη(θ) to∇η(θ).
? Algorithm to accurately estimate ∇βη from a single

sample path (POMDPG).
? Accuracy of approximation depends on parameter of

the algorithm (β ∈ [0, 1)); bias/variance trade-off.
? 1/(1− β) relates to mixing time of underlying Markov

chain.
? Line search using only gradient estimates.
? Many successful applications.
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Advertisement

• Papers available from http://csl.anu.edu.au.

• Two research positions available in the Machine
Learning Group at the Australian National University.


