# Direct Gradient-Based Reinforcement Learning

Jonathan Baxter Research School of Information Sciences and Engineering Australian National University http://csl.anu.edu.au/~jon Joint work with Peter Bartlett and Lex Weaver

December 5, 1999

# **Reinforcement Learning**

1

Models agent interacting with its environment.

- 1. Agent receives information about its state.
- 2. Agent chooses action or control based on stateinformation.
- 3. Agent receives a reward.
- 4. State is updated.
- 5. Goto ??.

#### **Reinforcement Learning**

- Goal: Adjust agent's behaviour to maximize long-term average reward.
- Key Assumption: state transitions are Markov.

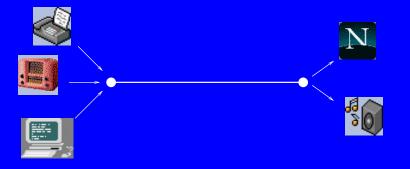




- State: Board position.
- Control: Move pieces.
- State Transitions: My move, followed by opponent's move.
- Reward: Win, draw, or lose.

# **Call Admission Control**

Telecomms carrier selling bandwidth: queueing problem.



- State: Mix of call types on channel.
- Control: Accept calls of certain type.
- State Transitions: Calls finish. New calls arrive.
- Reward: Revenue from calls accepted.

# **Cleaning Robot**



- State: Robot and environment (position, velocity, dust levels, ...).
- Control: Actions available to robot.
- State Transitions: depend on dynamics of robot and statistics of environment.
- Reward: Pick up rubbish, don't damage the furniture.



#### **Previous approaches:**

- Dynamic Programming can find optimal policies in small state spaces.
- Approximate Value-Function based approaches currently the method of choice in large state spaces.
- Numerous practical successes, BUT
- Policy performance can degrade at each step.



#### **Alternative Approach:**

- Policy parameters  $\theta \in \mathbb{R}^{K}$ , Performance:  $\eta(\theta)$ .
- Compute  $\nabla \eta(\theta)$  and step uphill (gradient ascent).
- Previous algorithms relied on accurate reward baseline or recurrent states.



#### **Our Contribution:**

- Approximation  $\nabla_{\beta}\eta(\theta)$  to  $\nabla\eta(\theta)$ .
- Parameter  $\beta \in [0,1)$  related to Mixing Time of problem.
- Algorithm to approximate  $\nabla_{\beta}\eta(\theta)$  via simulation (POMDPG)
- Line search in the presence of noise.

# Partially Observable Markov Decision Processes (POMDPs)

- States:  $\mathcal{S} = \{1, 2, \dots, n\}$   $X_t \in \mathcal{S}$
- Observations:  $\mathcal{Y} = \{1, 2, \dots, M\}$   $Y_t \in \mathcal{Y}$
- Actions or Controls:  $\mathcal{U} = \{1, 2, \dots, N\}$   $U_t \in \mathcal{U}$

Observation Process  $\nu$ : $\Pr(Y_t = y | X_t = i) = \nu_y(i)$ Stochastic Policy  $\mu$ : $\Pr(U_t = u | Y_t = y) = \mu_u(\theta, y)$ Rewards: $r: S \to \mathbb{R}$ 

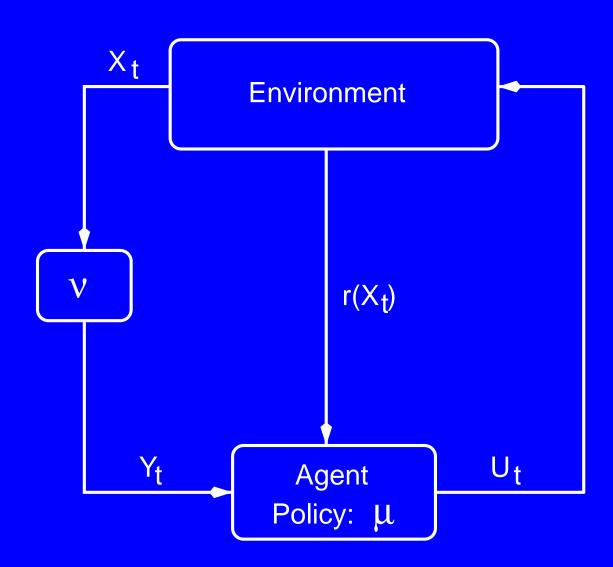
Adjustable parameters:  $\boldsymbol{\theta} \in \mathbb{R}^{K}$ 



#### **Transition Probabilities:**

$$\Pr(X_{t+1}=j|X_t=i,U_t=u)=p_{ij}(u)$$

# POMDP



#### **The Induced Markov Chain**

Transition Probabilities:

$$egin{aligned} p_{ij}(oldsymbol{ heta}) =& ext{Pr}\left(X_{t+1}=j ig| X_t=i
ight) \ &=& ext{E}_{y \sim 
u(X_t)} ext{E}_{u \sim \mu(oldsymbol{ heta},y)} \, p_{ij}(u) \end{aligned}$$

#### Transition Matrix:

 $P( heta) = [p_{ij}( heta)]$ 

#### **Stationary Distributions**

 $q = [q_1 \cdots q_n]' \in \mathbb{R}^n$  is a distribution over states.

 $egin{aligned} X_t &\sim q \ & \Rightarrow \quad X_{t+1} &\sim q' P( heta) \end{aligned}$ 

# **Definition:** A probability distribution $\pi \in \mathbb{R}^n$ is a **stationary distribution** of the Markov chain if

 $\pi' P(\theta) = \pi'.$ 

# **Stationary Distributions**

**Convenient Assumption:** For all values of the parameters  $\theta$ , there is a **unique** stationary distribution  $\pi(\theta)$ .

Implies the Markov chain mixes: For all  $X_0$ , the distribution of  $X_t$  approaches  $\pi(\theta)$ .

**Inconvenient Assumption:** Number of states *n* "essentially infinite".

Meaning: forget about storing a number for each state, or inverting  $n \times n$  matrices.

#### **Measuring Performance**

#### • Average Reward:

$$\eta( heta) = \sum_{i=1}^n \pi_i( heta) r(i)$$

#### • Goal: Find $\theta$ maximizing $\eta(\theta)$ .

# Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

#### **Approximate Value Functions**

• Discount Factor  $\beta \in [0, 1)$ , Discounted value of state i under policy  $\mu$ :

$$J^{\mu}_{eta}(i) = \mathrm{E}_{\mu}\left[r(X_0) + eta r(X_1) + eta^2 r(X_2) + \cdots 
ight| X_0 = i$$

• Idea: Choose restricted class of value functions  $\tilde{J}(\theta, i), \ \theta \in \mathbb{R}^{K}, i \in S$  (e.g neural network with parameters  $\theta$ ).

# **Policy Iteration**

#### **Iterate:**

- Given policy  $\mu$ , find approximation  $\tilde{J}(\theta, \cdot)$  to  $J^{\mu}_{\beta}$ .
- Many algorithms for finding  $\theta$ : TD( $\lambda$ ), Q-learning, Bellman residuals, ....
- Simulation and non-simulation based.
- Generate new policy  $\mu'$  using  $ilde{J}( heta, \cdot)$ :

 $\mu'_{u^*}( heta,i) = 1 \Leftrightarrow u^* = \mathrm{argmax}_{u \in \mathcal{U}} \sum_{j \in \mathcal{S}} p_{ij}(u) ilde{J}( heta,j)$ 

# **Approximate Value Functions**

#### • The Good:

 \* Backgammon (world-champion), chess (International Master), job-shop scheduling, elevator control, ...
 \* Notion of "backing-up" state values can be efficient.

#### • The Bad:

\* Unless  $|\tilde{J}(\theta, i) - J^{\mu}_{\beta}(i)| = 0$  for all states *i*, the new policy  $\mu'$  can be a lot worse than the old one. \* "Essentially Infinite" state spaces means we are likely to have very bad approximation error for some states.

# Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

#### **Direct Gradient Ascent**

- Desideratum: Adjusting the agent's parameters  $\theta$  should improve its performance.
- Implies...
- Adjust the parameters in the direction of the gradient of the average reward:

 $\theta := \theta + \gamma \nabla \eta(\theta)$ 

#### **Direct Gradient Ascent: Main Results**

- 1. Algorithm to estimate approximate gradient( $\nabla_{\beta}\eta$ ) from a sample path.
- 2. Accuracy of approximation depends on parameter of the algorithm ( $\beta$ ); bias/variance trade-off.
- 3. Line search algorithm using only gradient estimates.

## **Related Work**

Machine Learning: Williams' REINFORCE algorithm (1992).

Gradient ascent algorithm for restricted class of MDPs.
Requires accurate *reward baseline*, i.i.d. transitions.

Kimura et. al., 1998: extension to infinite horizon.

**Discrete Event Systems:** Algorithms that rely on recurrent states. MDPs: (Cao and Chen, 1997), POMDPs: (Marbach and Tsitsiklis, 1998).

**Control Theory:** Direct adaptive control using derivatives (Hjalmarsson, Gunnarsson, Gevers, 1994), (Kammer, Bitmead, Bartlett, 1997), (DeBruyne, Anderson, Gevers, Linard, 1997).

# Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

25 **Approximating the gradient** Recall: For  $\beta \in [0, 1)$ , **Discounted value** of state *i* is  $\overline{J_eta(i)} = \mathrm{E}\left[r(X_0) + eta r(X_1) + eta^2 r(X_2) + \cdots \mid X_0 = i
ight].$ Vector notation:  $J_{\beta} = (J_{\beta}(1), \dots, J_{\beta}(n)).$ Theorem: For all  $\beta \in [0,1)$ ,  $\nabla \eta(\theta) = \overline{\beta \pi'(\theta) \nabla P(\theta) J_{eta}} + (1 - \beta) \overline{\nabla \pi'(\theta)} \overline{J_{eta}}.$  $=\beta \nabla_{\beta} \eta(\theta) + (1-\beta) \nabla \pi'(\theta) J_{\beta}.$ ightarrow 0 as eta 
ightarrow 1estimate

#### **Mixing Times of Markov Chains**

•  $\ell_1$ -distance: If p, q are distributions on the states,

$$\|p-q\|_1 := \sum_{i=1}^n |p(i)-q(i)|$$

 d(t)-distance: Let p<sup>t</sup>(i) be the distribution over states at time t, starting from state i.

$$d(t) := \max_{ij} \|p^t(i) - p^t(j)\|_1$$

• Unique stationary distribution  $\Rightarrow d(t) \rightarrow 0$ .

Approximating the gradientMixing time:  $\tau^* := \min \{t: d(t) \le e^{-1}\}$ Theorem: For all  $\beta \in [0, 1), \theta \in \mathbb{R}^k$ , $\| \nabla \eta(\theta) - \nabla_{\!\!\beta} \eta(\theta) \| \le \operatorname{constant} \times \tau^*(\theta)(1-\beta).$ 

That is, if  $1/(1 - \beta)$  is large compared with the mixing time  $\tau^*(\theta)$ ,  $\nabla_{\beta}\eta(\theta)$  accurately approximates the gradient direction  $\nabla \eta(\theta)$ .

# Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

# Estimating $\nabla_{\beta}\eta(\theta)$ : POMDPG

Given: parameterized policies,  $\mu_u(\theta, y), \beta \in [0, 1)$ :

1. Set  $z_0 = \Delta_0 = 0 \in \mathbb{R}^K$ .

2. for each observation  $y_t$ , control  $u_t$ , reward  $r(i_{t+1})$  do

3. Set 
$$z_{t+1} = \beta z_t + rac{
abla \mu_{u_t}(\theta, y_t)}{\mu_{u_t}(\theta, y_t)}$$
 (eligibility trace)  
4. Set  $\Delta_{t+1} = \Delta_t + rac{1}{t+1} \left[ r(i_{t+1}) z_{t+1} - \Delta_t \right]$ 

#### 5. end for

#### **Convergence of POMDPG**

# Theorem: For all $eta \in [0,1), heta \in \mathbb{R}^K,$ $\Delta_t o abla_eta \eta( heta).$

# **Explanation of POMDPG**

Algorithm computes:

$$\Delta_T = rac{1}{T} \sum_{t=0}^{T-1} rac{
abla \mu_{u_t}}{\mu_{u_t}} \underbrace{ (r(i_{t+1}) + eta r(i_{t+2}) + \cdots + eta^{T-t-1} r(i_T))}_{ ext{Estimate of } discounted value `due to' action } u_t$$

•  $abla \mu_{u_t}(\theta, y_t)$  is the direction to increase the probability of the action  $u_t$ .

 It is weighted by something involving subsequent rewards, and

• divided by  $\mu_{u_t}$ : ensures "popular" actions don't dominate

#### **POMDPG: Bias/Variance trade-off**

$$\Delta_t \xrightarrow{t o \infty} 
abla_{\!\!eta} \eta( heta) \xrightarrow{eta o 1} 
abla \eta( heta)$$

#### • Bias/Variance Tradeoff: $\beta \approx 1$ gives:

- \* Accurate gradient approximation ( $\nabla_{\beta}\eta$  close to  $\nabla\eta$ ), but
- \* Large variance in estimates  $\Delta_t$  of  $\nabla_{\beta}\eta$  for small t.

#### **POMDPG: Bias/Variance trade-off**

$$\Delta_t \xrightarrow{t o \infty} 
abla_{\!\!eta} \eta( heta) \xrightarrow{eta o 1} 
abla \eta( heta)$$

#### • Recall: $1/(1-\beta) \approx \tau^*(\theta)$ (mixing time).

- \* Small mixing time  $\Rightarrow$  small  $\beta \Rightarrow$  accurate gradient estimate from short POMDPG simulation.
- \* Large mixing time  $\Rightarrow$  large  $\beta \Rightarrow$  accurate gradient estimate only from long POMDPG simulation.
- Conjecture: Mixing time is an intrinsic constraint on any simulation-based algorithm.

#### **Example: 3-state Markov Chain**

#### Transition\_Probabilities:

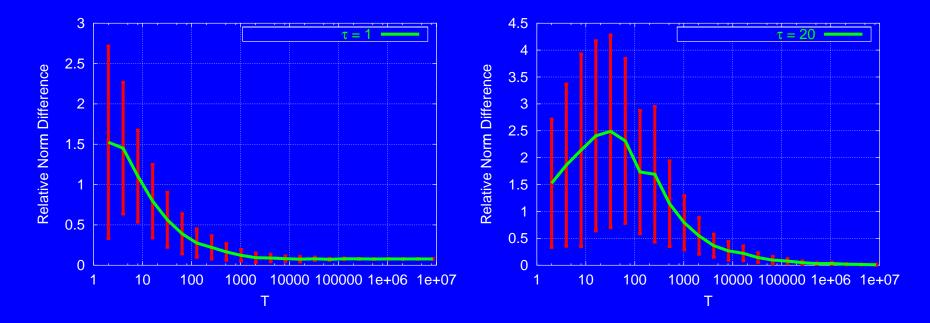
 $P(u_1) = \begin{bmatrix} 0 & 4/5 & 1/5 \\ 4/5 & 0 & 1/5 \\ 0 & 4/5 & 1/5 \end{bmatrix} P(u_2) = \begin{bmatrix} 0 & 1/5 & 4/5 \\ 1/5 & 0 & 4/5 \\ 0 & 1/5 & 4/5 \end{bmatrix}$ Observations:  $(\phi_1(i), \phi_2(i))$ : State 1: (2/3, 1/3) State 2: (1/3, 2/3) State 3: (5/18, 5/18)Parameterized Policy:  $\theta \in \mathbb{R}^2$ 

 $\mu_{u_1}( heta,i) = rac{e^{( heta_1\phi_1(i)+ heta_2\phi_2(i))}}{1+e^{( heta_1\phi_1(i)+ heta_2\phi_2(i))}} \hspace{0.4cm} \mu_{u_2}( heta,i) = 1-\mu_{u_1}( heta,i)$ 

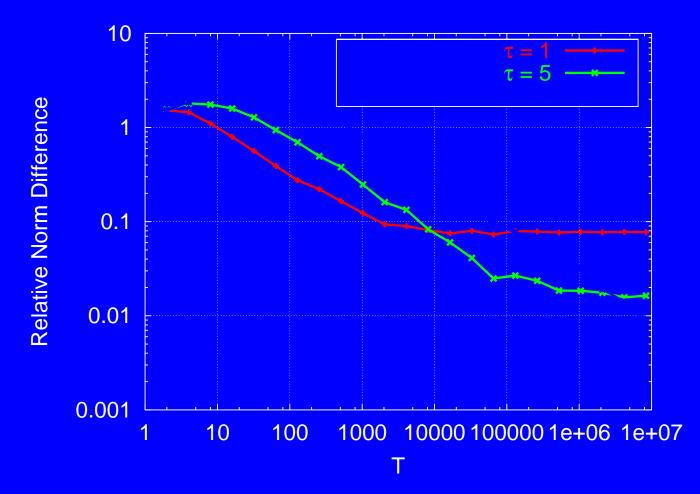
**Rewards:** (r(1), r(2), r(3)) = (0, 0, 1)

#### **Bias/Variance Trade-off**





#### **Bias/Variance Trade-off**



# Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

#### Line-search in the presence of noise

- Want to find maximum of  $\eta(\theta)$  in direction  $\nabla_{\!\beta}\eta(\theta)$ .
- Usual method: find 3 points  $\theta_i = \theta + \gamma_i \nabla_{\!\!\beta} \eta(\theta), \quad i = 1, 2, 3,$ with  $\gamma_1 < \gamma_2 < \gamma_3$  such that:  $\eta(\theta_2) > \eta(\theta_1), \quad \eta(\theta_2) > \eta(\theta_3)$  and interpolate.
- Problem:  $\eta(\theta)$  only available by simulation (e.g.  $\eta_T(\theta)$ ), so noisy:

 $\lim_{ heta_1 o heta_2} ext{var} \left[ ext{sign} \left( \eta_T( heta_2) - \eta_T( heta_1) 
ight) 
ight] = 1$ 

#### Line-search in the presence of noise

• Solution: Use gradients to bracket (POMDPG).  $\nabla_{\!\beta}\eta(\theta_1)\cdot\nabla_{\!\beta}\eta(\theta) > 0, \quad \nabla_{\!\beta}\eta(\theta_2)\cdot\nabla_{\!\beta}\eta(\theta) < 0$ 

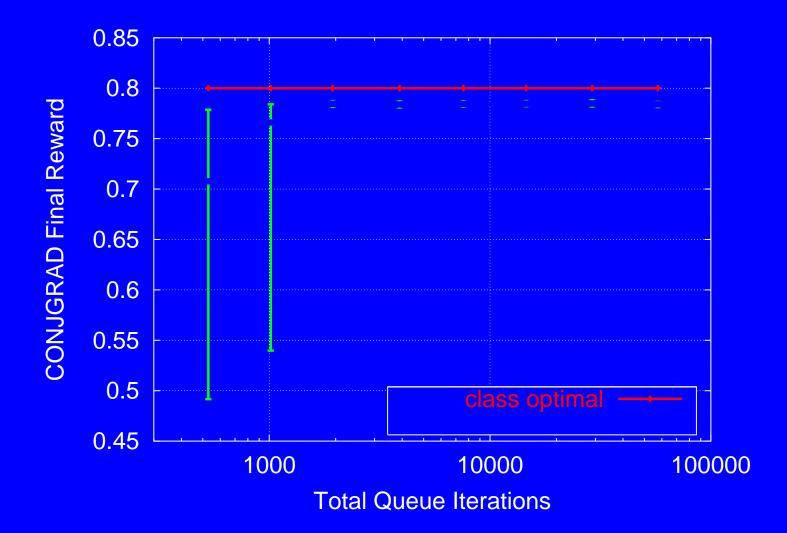
• Variance independent of  $\|\theta_2 - \theta_1\|$ .



# **Example: Call Admission Control**

- Telecommunications carrier selling bandwidth: queueing problem. From (Marbach and Tsitsiklis, 1998).
- Three call types, with differing arrival rates (Poisson), bandwidth requirements, rewards, holding times (exponential)
- State = observation = mix of calls.
- Policy = (squashed) linear controller.

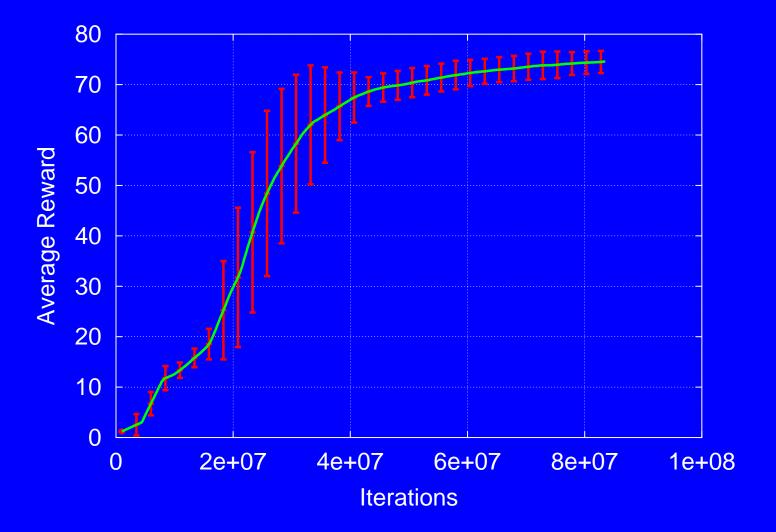
# Direct Reinforcement Learning: Call Admission Control



#### **Direct Reinforcement Learning: Puck World**

- Puck moving around mountainous terrain.
- Aim is to get out of a valley and on to a plateau
- reward = 0 everywhere except plateau (=100)
- Observation = relative location, absolute location, velocity.
- Neural-Network Controller
- Insufficient thrust to climb directly out of valley, must learn to "oscillate".

### **Direct Reinforcement Learning: Puck World**



### **Direct Reinforcement Learning**

#### • Philosophy:

- \* Adjusting policy should improve performance.
- \* View average reward as function of policy parameters:  $\eta(\theta)$ .
- $\star$  For suitably smooth policies:  $\nabla \eta(\theta)$  exists.
- **\star** Compute  $\nabla \eta(\theta)$  and step uphill.

# **Direct Reinforcement Learning**

#### • Main results:

- \* Approximation  $\nabla_{\beta}\eta(\theta)$  to  $\nabla\eta(\theta)$ .
- \* Algorithm to accurately estimate  $\nabla_{\beta}\eta$  from a single sample path (POMDPG).
- \* Accuracy of approximation depends on parameter of the algorithm ( $\beta \in [0, 1)$ ); bias/variance trade-off.
- \*  $1/(1 \beta)$  relates to mixing time of underlying Markov chain.
- \* Line search using only gradient estimates.
- Many successful applications.

#### **Advertisement**

- Papers available from http://csl.anu.edu.au.
- Two research positions available in the Machine Learning Group at the Australian National University.