Direct Gradient-Based Reinforcement Learning

Jonathan Baxter Research School of Information Sciences and Engineering Australian National University http://csl.anu.edu.au/~jon Joint work with Peter Bartlett and Lex Weaver

December 5, 1999

Reinforcement Learning

1

Models agent interacting with its environment.

- 1. Agent receives information about its state.
- 2. Agent chooses action or control based on stateinformation.
- 3. Agent receives a reward.
- 4. State is updated.
- 5. Goto ??.

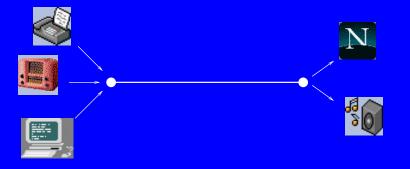
Reinforcement Learning

- Goal: Adjust agent's behaviour to maximize long-term average reward.
- Key Assumption: state transitions are Markov.

- State: Board position.
- Control: Move pieces.
- State Transitions: My move, followed by opponent's move.
- Reward: Win, draw, or lose.

Call Admission Control

Telecomms carrier selling bandwidth: queueing problem.



- State: Mix of call types on channel.
- Control: Accept calls of certain type.
- State Transitions: Calls finish. New calls arrive.
- Reward: Revenue from calls accepted.

Cleaning Robot

- State: Robot and environment (position, velocity, dust levels, ...).
- Control: Actions available to robot.
- State Transitions: depend on dynamics of robot and statistics of environment.
- Reward: Pick up rubbish, don't damage the furniture.

Previous approaches:

- Dynamic Programming can find optimal policies in small state spaces.
- Approximate Value-Function based approaches currently the method of choice in large state spaces.
- Numerous practical successes, BUT
- Policy performance can degrade at each step.

Alternative Approach:

- Policy parameters $\theta \in \mathbb{R}^{K}$, Performance: $\eta(\theta)$.
- Compute $\nabla \eta(\theta)$ and step uphill (gradient ascent).
- Previous algorithms relied on accurate reward baseline or recurrent states.

Our Contribution:

- Approximation $\nabla_{\beta}\eta(\theta)$ to $\nabla\eta(\theta)$.
- Parameter $\beta \in [0,1)$ related to Mixing Time of problem.
- Algorithm to approximate $\nabla_{\beta}\eta(\theta)$ via simulation (POMDPG)
- Line search in the presence of noise.

Partially Observable Markov Decision Processes (POMDPs)

- States: $\mathcal{S} = \{1, 2, \dots, n\}$ $X_t \in \mathcal{S}$
- Observations: $\mathcal{Y} = \{1, 2, \dots, M\}$ $Y_t \in \mathcal{Y}$
- Actions or Controls: $\mathcal{U} = \{1, 2, \dots, N\}$ $U_t \in \mathcal{U}$

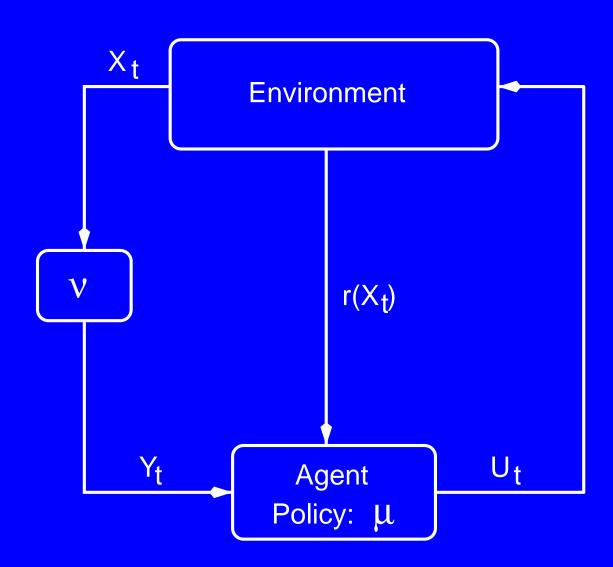
Observation Process ν : $\Pr(Y_t = y | X_t = i) = \nu_y(i)$ Stochastic Policy μ : $\Pr(U_t = u | Y_t = y) = \mu_u(\theta, y)$ Rewards: $r: S \to \mathbb{R}$

Adjustable parameters: $\boldsymbol{\theta} \in \mathbb{R}^{K}$

Transition Probabilities:

$$\Pr(X_{t+1}=j|X_t=i,U_t=u)=p_{ij}(u)$$

POMDP



The Induced Markov Chain

Transition Probabilities:

$$egin{aligned} p_{ij}(oldsymbol{ heta}) =& ext{Pr}\left(X_{t+1}=j ig| X_t=i
ight) \ &=& ext{E}_{y \sim
u(X_t)} ext{E}_{u \sim \mu(oldsymbol{ heta},y)} \, p_{ij}(u) \end{aligned}$$

Transition Matrix:

 $P(heta) = [p_{ij}(heta)]$

Stationary Distributions

 $q = [q_1 \cdots q_n]' \in \mathbb{R}^n$ is a distribution over states.

 $egin{aligned} X_t &\sim q \ & \Rightarrow \quad X_{t+1} &\sim q' P(heta) \end{aligned}$

Definition: A probability distribution $\pi \in \mathbb{R}^n$ is a **stationary distribution** of the Markov chain if

 $\pi' P(\theta) = \pi'.$

Stationary Distributions

Convenient Assumption: For all values of the parameters θ , there is a **unique** stationary distribution $\pi(\theta)$.

Implies the Markov chain mixes: For all X_0 , the distribution of X_t approaches $\pi(\theta)$.

Inconvenient Assumption: Number of states *n* "essentially infinite".

Meaning: forget about storing a number for each state, or inverting $n \times n$ matrices.

Measuring Performance

• Average Reward:

$$\eta(heta) = \sum_{i=1}^n \pi_i(heta) r(i)$$

• Goal: Find θ maximizing $\eta(\theta)$.

Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

Approximate Value Functions

• Discount Factor $\beta \in [0, 1)$, Discounted value of state i under policy μ :

$$J^{\mu}_{eta}(i) = \mathrm{E}_{\mu}\left[r(X_0) + eta r(X_1) + eta^2 r(X_2) + \cdots
ight| X_0 = i$$

• Idea: Choose restricted class of value functions $\tilde{J}(\theta, i), \ \theta \in \mathbb{R}^{K}, i \in S$ (e.g neural network with parameters θ).

Policy Iteration

Iterate:

- Given policy μ , find approximation $\tilde{J}(\theta, \cdot)$ to J^{μ}_{β} .
- Many algorithms for finding θ : TD(λ), Q-learning, Bellman residuals,
- Simulation and non-simulation based.
- Generate new policy μ' using $ilde{J}(heta, \cdot)$:

 $\mu'_{u^*}(heta,i) = 1 \Leftrightarrow u^* = \mathrm{argmax}_{u \in \mathcal{U}} \sum_{j \in \mathcal{S}} p_{ij}(u) ilde{J}(heta,j)$

Approximate Value Functions

• The Good:

 * Backgammon (world-champion), chess (International Master), job-shop scheduling, elevator control, ...
 * Notion of "backing-up" state values can be efficient.

• The Bad:

* Unless $|\tilde{J}(\theta, i) - J^{\mu}_{\beta}(i)| = 0$ for all states *i*, the new policy μ' can be a lot worse than the old one. * "Essentially Infinite" state spaces means we are likely to have very bad approximation error for some states.

Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

Direct Gradient Ascent

- Desideratum: Adjusting the agent's parameters θ should improve its performance.
- Implies...
- Adjust the parameters in the direction of the gradient of the average reward:

 $\theta := \theta + \gamma \nabla \eta(\theta)$

Direct Gradient Ascent: Main Results

- 1. Algorithm to estimate approximate gradient($\nabla_{\beta}\eta$) from a sample path.
- 2. Accuracy of approximation depends on parameter of the algorithm (β); bias/variance trade-off.
- 3. Line search algorithm using only gradient estimates.

Related Work

Machine Learning: Williams' REINFORCE algorithm (1992).

Gradient ascent algorithm for restricted class of MDPs.
Requires accurate *reward baseline*, i.i.d. transitions.

Kimura et. al., 1998: extension to infinite horizon.

Discrete Event Systems: Algorithms that rely on recurrent states. MDPs: (Cao and Chen, 1997), POMDPs: (Marbach and Tsitsiklis, 1998).

Control Theory: Direct adaptive control using derivatives (Hjalmarsson, Gunnarsson, Gevers, 1994), (Kammer, Bitmead, Bartlett, 1997), (DeBruyne, Anderson, Gevers, Linard, 1997).

Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

25 **Approximating the gradient** Recall: For $\beta \in [0, 1)$, **Discounted value** of state *i* is $\overline{J_eta(i)} = \mathrm{E}\left[r(X_0) + eta r(X_1) + eta^2 r(X_2) + \cdots \mid X_0 = i
ight].$ Vector notation: $J_{\beta} = (J_{\beta}(1), \dots, J_{\beta}(n)).$ Theorem: For all $\beta \in [0,1)$, $\nabla \eta(\theta) = \overline{\beta \pi'(\theta) \nabla P(\theta) J_{eta}} + (1 - \beta) \overline{\nabla \pi'(\theta)} \overline{J_{eta}}.$ $=\beta \nabla_{\beta} \eta(\theta) + (1-\beta) \nabla \pi'(\theta) J_{\beta}.$ ightarrow 0 as eta
ightarrow 1estimate

Mixing Times of Markov Chains

• ℓ_1 -distance: If p, q are distributions on the states,

$$\|p-q\|_1 := \sum_{i=1}^n |p(i)-q(i)|$$

 d(t)-distance: Let p^t(i) be the distribution over states at time t, starting from state i.

$$d(t) := \max_{ij} \|p^t(i) - p^t(j)\|_1$$

• Unique stationary distribution $\Rightarrow d(t) \rightarrow 0$.

Approximating the gradientMixing time: $\tau^* := \min \{t: d(t) \le e^{-1}\}$ Theorem: For all $\beta \in [0, 1), \theta \in \mathbb{R}^k$, $\| \nabla \eta(\theta) - \nabla_{\!\!\beta} \eta(\theta) \| \le \operatorname{constant} \times \tau^*(\theta)(1-\beta).$

That is, if $1/(1 - \beta)$ is large compared with the mixing time $\tau^*(\theta)$, $\nabla_{\beta}\eta(\theta)$ accurately approximates the gradient direction $\nabla \eta(\theta)$.

Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

Estimating $\nabla_{\beta}\eta(\theta)$: POMDPG

Given: parameterized policies, $\mu_u(\theta, y), \beta \in [0, 1)$:

1. Set $z_0 = \Delta_0 = 0 \in \mathbb{R}^K$.

2. for each observation y_t , control u_t , reward $r(i_{t+1})$ do

3. Set
$$z_{t+1} = \beta z_t + rac{
abla \mu_{u_t}(\theta, y_t)}{\mu_{u_t}(\theta, y_t)}$$
 (eligibility trace)
4. Set $\Delta_{t+1} = \Delta_t + rac{1}{t+1} \left[r(i_{t+1}) z_{t+1} - \Delta_t \right]$

5. end for

Convergence of POMDPG

Theorem: For all $eta \in [0,1), heta \in \mathbb{R}^K,$ $\Delta_t o abla_eta \eta(heta).$

Explanation of POMDPG

Algorithm computes:

$$\Delta_T = rac{1}{T} \sum_{t=0}^{T-1} rac{
abla \mu_{u_t}}{\mu_{u_t}} \underbrace{ (r(i_{t+1}) + eta r(i_{t+2}) + \cdots + eta^{T-t-1} r(i_T))}_{ ext{Estimate of } discounted value `due to' action } u_t$$

• $abla \mu_{u_t}(\theta, y_t)$ is the direction to increase the probability of the action u_t .

 It is weighted by something involving subsequent rewards, and

• divided by μ_{u_t} : ensures "popular" actions don't dominate

POMDPG: Bias/Variance trade-off

$$\Delta_t \xrightarrow{t o \infty}
abla_{\!\!eta} \eta(heta) \xrightarrow{eta o 1}
abla \eta(heta)$$

• Bias/Variance Tradeoff: $\beta \approx 1$ gives:

- * Accurate gradient approximation ($\nabla_{\beta}\eta$ close to $\nabla\eta$), but
- * Large variance in estimates Δ_t of $\nabla_{\beta}\eta$ for small t.

POMDPG: Bias/Variance trade-off

$$\Delta_t \xrightarrow{t o \infty}
abla_{\!\!eta} \eta(heta) \xrightarrow{eta o 1}
abla \eta(heta)$$

• Recall: $1/(1-\beta) \approx \tau^*(\theta)$ (mixing time).

- * Small mixing time \Rightarrow small $\beta \Rightarrow$ accurate gradient estimate from short POMDPG simulation.
- * Large mixing time \Rightarrow large $\beta \Rightarrow$ accurate gradient estimate only from long POMDPG simulation.
- Conjecture: Mixing time is an intrinsic constraint on any simulation-based algorithm.

Example: 3-state Markov Chain

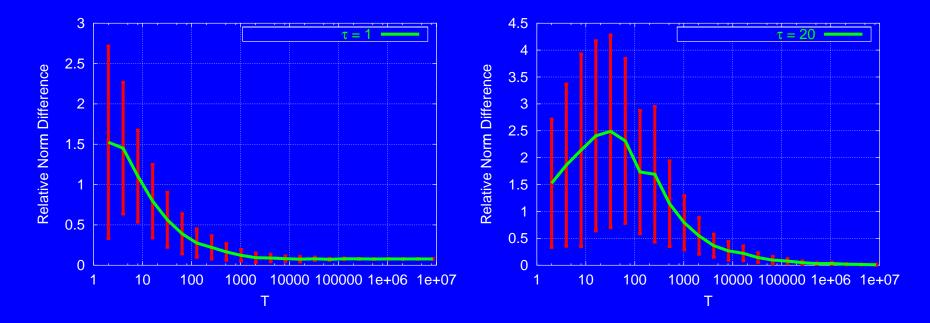
Transition_Probabilities:

 $P(u_1) = \begin{bmatrix} 0 & 4/5 & 1/5 \\ 4/5 & 0 & 1/5 \\ 0 & 4/5 & 1/5 \end{bmatrix} P(u_2) = \begin{bmatrix} 0 & 1/5 & 4/5 \\ 1/5 & 0 & 4/5 \\ 0 & 1/5 & 4/5 \end{bmatrix}$ Observations: $(\phi_1(i), \phi_2(i))$: State 1: (2/3, 1/3) State 2: (1/3, 2/3) State 3: (5/18, 5/18)Parameterized Policy: $\theta \in \mathbb{R}^2$

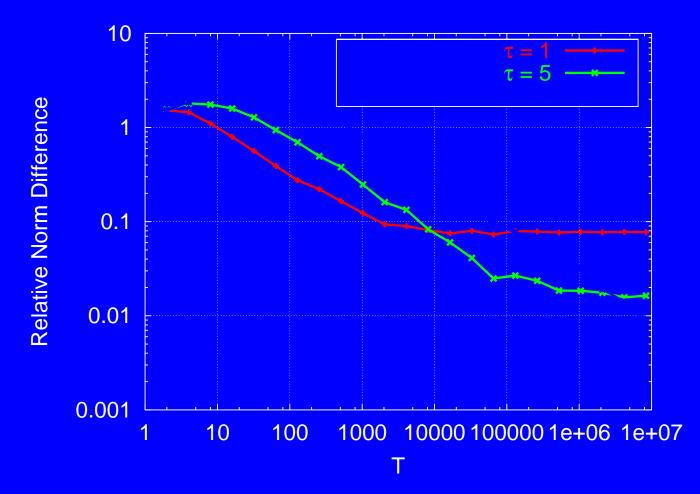
 $\mu_{u_1}(heta,i) = rac{e^{(heta_1\phi_1(i)+ heta_2\phi_2(i))}}{1+e^{(heta_1\phi_1(i)+ heta_2\phi_2(i))}} \hspace{0.4cm} \mu_{u_2}(heta,i) = 1-\mu_{u_1}(heta,i)$

Rewards: (r(1), r(2), r(3)) = (0, 0, 1)

Bias/Variance Trade-off



Bias/Variance Trade-off



Summary

- Partially Observable Markov Decision Processes.
- Previous approaches: value function methods.
- Direct gradient ascent.
- Approximating the gradient of the average reward.
- Estimating the approximate gradient: POMDPG.
- Line search in the presence of noise.
- Experimental results.

Line-search in the presence of noise

- Want to find maximum of $\eta(\theta)$ in direction $\nabla_{\!\beta}\eta(\theta)$.
- Usual method: find 3 points $\theta_i = \theta + \gamma_i \nabla_{\!\!\beta} \eta(\theta), \quad i = 1, 2, 3,$ with $\gamma_1 < \gamma_2 < \gamma_3$ such that: $\eta(\theta_2) > \eta(\theta_1), \quad \eta(\theta_2) > \eta(\theta_3)$ and interpolate.
- Problem: $\eta(\theta)$ only available by simulation (e.g. $\eta_T(\theta)$), so noisy:

 $\lim_{ heta_1 o heta_2} ext{var} \left[ext{sign} \left(\eta_T(heta_2) - \eta_T(heta_1)
ight)
ight] = 1$

Line-search in the presence of noise

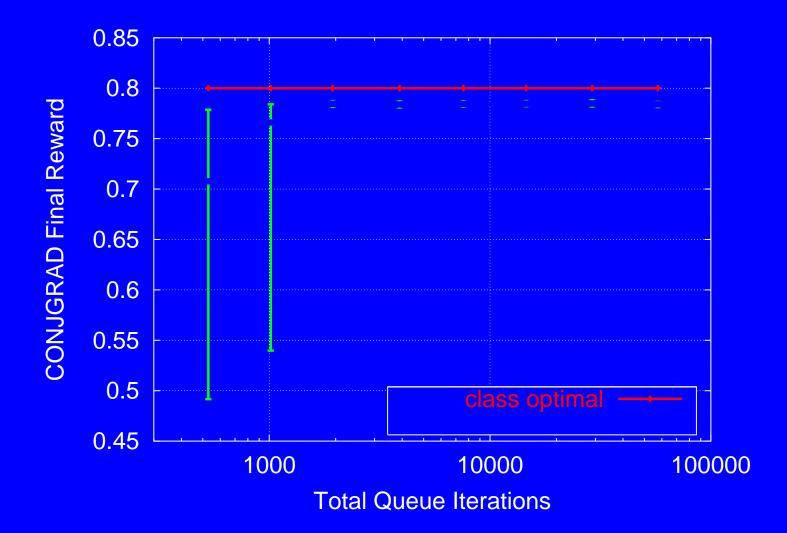
• Solution: Use gradients to bracket (POMDPG). $\nabla_{\!\beta}\eta(\theta_1)\cdot\nabla_{\!\beta}\eta(\theta) > 0, \quad \nabla_{\!\beta}\eta(\theta_2)\cdot\nabla_{\!\beta}\eta(\theta) < 0$

• Variance independent of $\|\theta_2 - \theta_1\|$.

Example: Call Admission Control

- Telecommunications carrier selling bandwidth: queueing problem. From (Marbach and Tsitsiklis, 1998).
- Three call types, with differing arrival rates (Poisson), bandwidth requirements, rewards, holding times (exponential)
- State = observation = mix of calls.
- Policy = (squashed) linear controller.

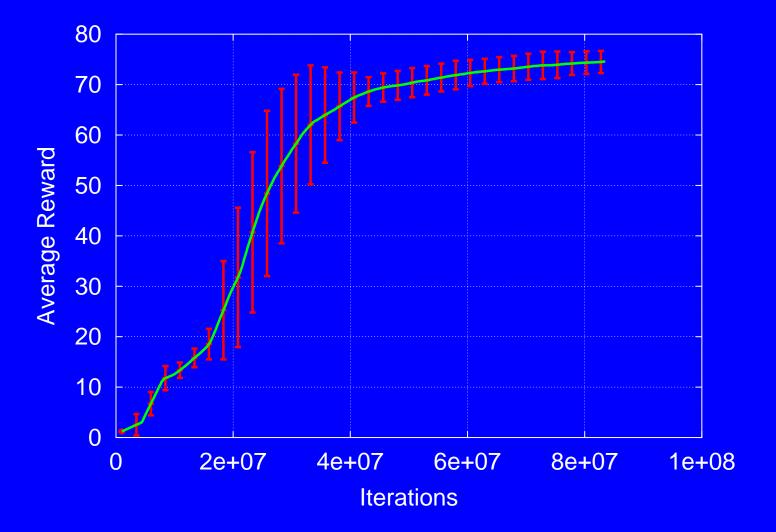
Direct Reinforcement Learning: Call Admission Control



Direct Reinforcement Learning: Puck World

- Puck moving around mountainous terrain.
- Aim is to get out of a valley and on to a plateau
- reward = 0 everywhere except plateau (=100)
- Observation = relative location, absolute location, velocity.
- Neural-Network Controller
- Insufficient thrust to climb directly out of valley, must learn to "oscillate".

Direct Reinforcement Learning: Puck World



Direct Reinforcement Learning

• Philosophy:

- * Adjusting policy should improve performance.
- * View average reward as function of policy parameters: $\eta(\theta)$.
- \star For suitably smooth policies: $\nabla \eta(\theta)$ exists.
- **\star** Compute $\nabla \eta(\theta)$ and step uphill.

Direct Reinforcement Learning

• Main results:

- * Approximation $\nabla_{\beta}\eta(\theta)$ to $\nabla\eta(\theta)$.
- * Algorithm to accurately estimate $\nabla_{\beta}\eta$ from a single sample path (POMDPG).
- * Accuracy of approximation depends on parameter of the algorithm ($\beta \in [0, 1)$); bias/variance trade-off.
- * $1/(1 \beta)$ relates to mixing time of underlying Markov chain.
- * Line search using only gradient estimates.
- Many successful applications.

Advertisement

- Papers available from http://csl.anu.edu.au.
- Two research positions available in the Machine Learning Group at the Australian National University.