Using EM to Learn Motion Behaviors of Persons with Mobile Robots

Maren Bennewitz Wolfram Burgard Sebastian Thrun

Also involved: Dirk Schulz, Dirk Hähnel and many others

Motivation

- Robots that know where people are and what they do can do better!
- Examples...

Minerva

Perl: A Nursing Robot

Albert: An Interactive Service Robot

Three-Month Deployment of Albert at the HNF

Tracking People

- Key questions
 - How many people are there?
 - Where do they go?
- Requirements
 - Real time
 - No model of the environment
 - Robot in motion

Example Run

Tracking with a Moving Robot

Mapping in Populated Environments

Filtering beams corresponding to persons improves maps:

Increased Matching Accuracy by Filtering People

Learning 3d-Maps

Learning Motion Patterns

Knowledge of typical motion patterns helps robots to

- predict behavior of persons
- avoid possible conflicts
- improve their service
- **...**

2D Map of a Domestic Environment, Learned by a Robot

Learning Trajectories of People in Their Homes

- Which trajectory does the person take?
- Where is the person going to?

Tracking People/Motion Segmentation

Input: Set S of data sequences $s_1, ..., s_N$

What we are looking for:

- Set θ of position-sequences $\theta_1, \ldots, \theta_M$, one for each pattern.
- Correspondence table $x_{m,n}$ telling us, which data s_n set belongs to which motion pattern θ_m .

Problem:

How can we estimate $x_{m,n}$?

Density Representation

 One Gaussian with fixed variance for every time step of every motion

pattern

Formal Specification

We want to maximize

$$E_{x}[\log p(s, x \mid \theta)] = E[c_{1} - c_{2} \sum_{n=1}^{N} \sum_{m=1}^{M} x_{m,n} \log p(s_{n} \mid \theta_{m})]$$

Linearity of
$$E[...]$$
 = $c_1 - c_2 \sum_{n=1}^{N} \sum_{m=1}^{M} E[x_{m,n}] \log p(s_n | \theta_m)$

Gaussians
$$= c_1 - c_2 \sum_{n=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} E[x_{m,n}] \cdot ||s_n^t - \mu_m^t||$$

Extension of k-means clustering to trajectories!

Solution by Applying the EM-Algorithm

Maximize $E_x[\log p(s,x|\theta)]$ through an iterative sequence of models θ^1 , θ^2 , ...

E-Step:

$$E[x_{m,n}] \leftarrow \alpha p(s_n \mid \theta_m) = \alpha \prod_{t=1}^{T} e^{-\frac{\left\|x_n^t - \mu_m^t\right\|}{2\sigma^2}}$$

The M-Step

$$\theta_m \leftarrow \underset{\theta_m}{\operatorname{arg\,max}} \sum_{n=1}^{N} \sum_{m=1}^{M} E[x_{m,n}] \cdot \log p(s_n \mid \theta_m)$$

Since we have Gaussians with a fixed variance:

$$\mu_m^t \leftarrow \frac{\sum_{n=1}^N E[x_{m,n}] \cdot \mathbf{x}_n^t}{\sum_{n=1}^N E[x_{m,n}]}$$

Estimating the Number of Model Components

Whenever EM has converged to a (local) maximum:

- 1. Try to introduce a new motion pattern for the trajectory which has the lowest likelihood under the current model.
- 2. Try to eliminate the motion pattern which hast the lowest utility.

Select model θ which has the highest evaluation

$$E_x[\log p(s,x|\theta)] - M\alpha$$

where M = # model components, $\alpha =$ penalty term

Application of EM

Model Selection

Clustering Results

Prediction Accuracy

Why it's sometimes difficult

during learning:

during classification:

... because there are serious overlaps!

Conclusions and Future Work

- Technique to learn motion patterns of people in home and office environments.
- Learning more abstract patterns (lower complexity models, e.g. linear piecewise approximations)
- Adapting the robot's behavior according to the predicted behavior
- Applications

Example: Markov Chains

 \dots and goodbye!

