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Motivation

m Robots that know where people are
and what they do can do better!

m Examples...



Minerva

Minerva

ICRA-99



Perl:
A Nursing Robot




Albert:
An Interactive Service Robot




Three-Month Deployment of
Albert at the HNF




Tracking People

" Key questions
" How many people are there?
" Where do they go?

" Requirements
" Real time
" No model of the environment
" Robot in motion




Example Run

[ICRA-2001]



Tracking with a Moving Robot

[CVPR-2001]



Mapping in Populated
Environments

Filtering beams corresponding to persons
improves maps:




Increased Matching Accuracy
by Filtering People
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Learning Motion Patterns

Knowledge of typical motion patterns
helps robots to

m predict behavior of persons
m avoid possible conflicts

m improve their service
l



2D Map of a Domestic Environment,
Learned by a Robot




Learning Trajectories of People
iIn Their Homes

A |

® Which trajectory does the person take?

® Where is the person going to?



Tracking People/Motion Segmentation

Input: Set S of data sequences s, ..., Sy



What we are looking for:

m Set 0 of position-sequences 9,, ...,
0,, one for each pattern.

m Correspondence table x,, , telling
us, which data s, set belongs to
which motion pattern 6.

Problem:

How can we estimate x,, ,?



Density Representation

m One Gaussian with fixed variance for
every time step of every motion
pattern




Formal Specification

We want to maximize

E,[log p(s,x|6)] = E[c,—¢,> > x,.log p(s, 6,,)]
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Extension of k-means clustering to trajectories!



Solution by Applying the
EM-Algorithm

Maximize E,[logp(s,x|0)] through an
iterative sequence of models 6, 67, ...

E-Step:

s
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The M-Step

— arg maxZZ E[x,,]

n=1 m=1

og p(s, [0,,)

Since we have Gaussians with a fixed variance:
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Estimating the Number of
Model Components

Whenever EM has converged to a (local) maximum:

1. Try to introduce a new motion pattern for the
trajectory which has the lowest likelihood under
the current model.

2. Try to eliminate the motion pattern which hast
the lowest utility.

Select model B which has the highest evaluation
E,[log p(s, x|0)] -Ma

where M = #model components, & = penalty term



Application of EM
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Model Selection
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Clustering Results




Prediction Accuracy

correctly classified trajectories [%]
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Why it’'s sometimes difficult ...

during learning: during classification:

We b
T

... because there are serious overlaps!



Conclusions and Future Work

m Technique to learn motion patterns of
people in home and office
environments.

" Learning more abstract patterns (lower
complexity models, e.g. linear piecewise
approximations)

" Adapting the robot’s behavior according to
the predicted behavior

" Applications



Example: Markov Chains
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... and goodbye!




