
Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20011

Planning, Execution & LearningPlanning, Execution & Learning
1. Transformational Planning1. Transformational Planning

Reid Simmons

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20012

Transformational PlanningTransformational Planning
• Basic Idea

– Create new plan by modifying existing plan
• Reordering steps
• Removing/replacing steps
• Changing parameter bindings
• …

• When Useful?
– Tweaking or merging existing plans (case-based planning)
– “Planning as Debugging”

• Can be viewed as “intelligent backtracking”

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20013

Partial PlansPartial Plans
• Complete Plan

– Total order, all parameters bound

• Plan Completion Set
– Set of complete plans

• Partial Plan
– Plan consistent with one plan completion set

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20014

Transformational Search SpaceTransformational Search Space
• Search Space of Refinement Planners (UCPOP, Prodigy)

– Can move from one node in search space to another only if
completion set of second plan is subset of first

• Search Space of Transformational Planners
– No relationship necessary between completion sets of

connected nodes in search space
– Can “jump” between partial plans without backtracking

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20015

Advantages and DisadvantagesAdvantages and Disadvantages
+ New Search

Opportunities

+ Can Avoid Unnecessary
Backtracking

+ Can Use Total-Order
Planner and Get Many of
the Advantages of
Partial-Order Planner

+ Can Use for Modifying
Existing Plans (plan
libraries, case bases)

- Much Larger Branching
Factor

- More Complex Algorithms

- Need to Detect Cycles in
Search Space

- Hard to Guarantee
Completeness

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20016

Hacker (Sussman, 1975)Hacker (Sussman, 1975)
• “A Theory of Skill Acquisition”

– Either use an existing plan (“subroutine”) from a “library”,
or create a new one (either from scratch, or by conjoining
and debugging existing plans)

• “The Virtuous Nature of Bugs”
– Critics look for failures or “un-aesthetic” plans (e.g., moving

same object twice in a row)
– Bugs are patched, then generalized
– But, patching never leads to wholesale rearrangement

• Cannot Optimally Solve “Sussman’s Anomaly”
– Linear Planner (no interleaving of learned subroutines)

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20017

CHEF (Hammond, 1987)CHEF (Hammond, 1987)
• Plan Repair for Case-Based Planning

– Build new plans from “memories” (instances) of old ones
– Tweak plans to fit new situations

• Use Causal Explanations to Access Different Repair Strategies
– Produced by simulation / forward propagation

• Repair Failure Without Interfering with Other Goals
– Each repair strategy breaks a link in the causal chain
– Seventeen general repair rules (mostly domain-independent)

• Reorder events
• Remove precondition
• Split step into two and run concurrently
• Replace existing tool
• Increase “down” side of a balance relationship

– Question-answering approach

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20018

Making the Perfect SouffléMaking the Perfect Soufflé
• Strategy: Trying to make strawberry soufflé by adapting regular soufflé recipe

• Observe: Soufflé is flat
Failure: Side-Effect:Disabled-Condition:Balance

Evaluate Strategy: Alter-Plan:Side-Effect

Question: Is there an alternative to “pulp strawberries” that will enable “dish tastes
like berries” and does not cause “thin liquid in bowl from strawberries”?

Response: Use “strawberry preserves” instead

Evaluate Strategy: Alter-Plan:Precondition

Question: Is there an alternative to “bake batter for 25 minutes” that will satisfy “batter
now risen” and does not require “thin liquid in bowl from strawberries”?

Response: None

Evaluate Strategy: Recover

Question: Is there a plan to recover from “thin liquid in bowl from strawberries”

Response: After “pulp strawberries” do “drain strawberries”

• Heuristic (domain-specific) knowledge used to choose which repair to
actually use for a given failure

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 20019

Gordius (Simmons, 1987)Gordius (Simmons, 1987)
• Debug Plans Produced by “Case-Based” Systems

– Debugging “almost right” plans
– Also “planning as debugging”: Debug initially null plan

• Analyze Causal Explanations for Bugs
– Bug is an inconsistency between desired and predicted

(observed) state of the world
– Bug manifestation indicates underlying error in problem

solving
– Can change predicted to match desired, or vice versa

• Assumption-Oriented Repair Strategy
– Trace causal explanation to assumptions underlying bugs
– Replace potentially faulty assumptions
– Regress desired state to determine how to change plan

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200110

Debugging Sussman’s AnomalyDebugging Sussman’s Anomaly

A B
C

Initial State Goal

A
B
C

On(A, B, start) On(B, C, start)

~On(A, B, start) ~On(B, C, start) {start < end,
persistence}

~On(B, C, end)Predicted

{Goal}On(B, C, end)Desired

{start < end,
persistence}

~On(A, B, end)Predicted

{Goal}On(A, B, end)Desired

ReasonsBug

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200111

Debugging Sussman’s AnomalyDebugging Sussman’s Anomaly

On(A, B, start) On(B, C, start)

{start < end,
persistence}

~On(B, C, end)Predicted

{Goal}On(B, C, end)Desired

{start < t1,
persistence,

move1.arg1 = A}
~Clear(A, t1)Predicted

{Move1}Clear(A, t1)Desired

ReasonsBug

~On(B, C, start)

Move1(A, B, t1)

Clear(A, t1) Clear(B, t1)

~Clear(A, start) Clear(B, start)

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200112

Clear(B, start)

Move2(C, B, t2)

Clear(C, start)

Debugging Sussman’s AnomalyDebugging Sussman’s Anomaly

On(A, B, start) On(B, C, start)

{start < end,
persistence}~On(B, C, end)Predicted

{Goal}On(B, C, end)Desired

{t2 < t1,
Move2,

persistence,
move2.arg2 = B}

~Clear(B, t1)Predicted

{Move1}Clear(B, t1)Desired

ReasonsBug

~On(B, C, start)

Move1(A, B, t1)

Clear(A, t1) Clear(B, t1)

Move2(C, B, t2)

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200113

TPOP (Younes)TPOP (Younes)
• Transformational Partial Order Planner

– Built on top of UCPOP
– Record reasons for adding constraints to plan (links,

bindings, orderings, actions, …)
– Add transformational operators as threat resolution

mechanisms
• Relink
• Reorder
• Alter bindings

– Need to propagate changes if reasons no longer valid
– Need to avoid cycles in search space
– Very much dependent on good search heuristics

•Work in Progress

(may be exponential # of changes that can undo constraint)

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200114

Structured Reactive Controllers (Beetz)Structured Reactive Controllers (Beetz)
• Create Reactive Controllers that are “Transparent”

– RPL: Expressive, high-level programming language
specialized for reasoning about plan execution

(with-policy (check-signposts-when-necessary)
(partial-order

(top-level
(:tag command-2

(seq (go 2 2)
(let ((obs (look-for ‘((category ball) 0)))

(if (not (null obs))
(start-tracking (first obs) 0)
(fail))))))))

• Planner Detects Failures (Real or Simulated) and Debugs
– Library of plan revisions (XFRML)
– Uses Monte-Carlo simulation of plans to deal with

uncertainty (execution, sensing, environment)
– Analyzes execution trace to understand bug

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200115

Repairing Reactive ProceduresRepairing Reactive Procedures
• Plan-Transformation Rules

– “If a goal might be clobbered by a robot action, then execute
the clobbering subplan before achieving the goal”

– “If a goal might be left unachieved because the robot
overlooked an object, then use a different sensing routine for
perceiving the object”

– “If a goal might be left unachieved because the robot had an
ambiguous object description, then achieve the goal for all
objects satisfying that description”

– “If a goal might be clobbered by an exogenous event, then
stabilize the goal immediately after achieving it”

– If GOAL(OB) is clobbered by an exogenous event and DESIG
is the data structure returned by the sensing routine that saw
OB and the robot tried to achieve GOAL(DESIG) with plan P

– Then replace P with SEQ(P, STABILIZE(GOAL(DESIG)))

Planning, Execution & Learning: Transformational Simmons, Veloso : Fall 200116

Open QuestionsOpen Questions
• Can we create simple transformational planning

algorithms?

• Can we create provably sound and complete
transformational planning algorithms

• Under what circumstances do transformational planners
perform better than pure refinement planners?

• Can we improve efficiency by combining assumption-
oriented approach (GORDIUS, TPOP) with fault-type
approach (HACKER, CHEF)?

