
Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20011

Planning, Execution & Learning
1. Introduction –

Representation and Search

Reid Simmons

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20012

Administrative Business
• Web Site: www.cs.cmu.edu/~reids/planning

• Email: reids@cs.cmu.edu; mmv@cs.cmu.edu

• Office: NSH 3205 (Reid); Wean 7123 (Manuela)

• Readings: No Textbook; Research articles posted on web
site

• Evaluation:
– 3 Homework Assignments (15% each)

– Term Project (30%)

– Final Take-Home Exam (25%)

• No Class September 19 (next Wednesday);
Makeup Class Monday October 22 (mid-term break)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20013

An Agent Architecture

The
World

Perception

Execution Planning

Knowledge
Beliefs

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20014

Why is Planning Hard?
• The Problem:

– Find a set/sequence of actions that can transform an initial
state of the world to a goal state

– Alternately: Achieve a set of goals

• Why Difficult?
– Uncertainty about environment (e.g., initial state)

– Uncertainty about effects of actions

– Other agents / external events can affect goal achievement

– Agents own actions can have bad effects
(“goal interactions”)

– Time and resource constraints

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20015

How to Make Planning Easier?
• Take Advantage of Characteristics of the Problem to

Make Search Simpler

• Explicit Representations of State, Goals, Actions and Plans
– Can focus search on actions that desired given subgoals

– Specialized algorithms can operate more efficiently

• Goal Decomposition / “Divide and Conquer”
– Assume conjunctive goals achieved nearly independently

– Typically, planning problems are not puzzles

• Flexible Search Strategies
– Order in which problem is solved not necessarily order in

which plan is executed

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20016

Simplifying Assumptions
• Known Initial State

• Deterministic Actions

• Single Agent / No External Events

• Simple Action Representation
– No conditional effects

– No quantified effects

– No functional effects

• No Concurrent Actions

• No Sensing Actions (Implies no branching points in plans)

• No Deadlines and Sufficient Resources

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20017

Representation and Search

The
World

Perception

Execution
Planning

Search Space
Search Direction
Goal Ordering
Plan Ordering

Knowledge/Beliefs
State
Goals
Actions
Time
Resources

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20018

The Blocks World I

• All blocks of equal size

• Fixed table; Block position on table does not matter

• At most one block on top of another

• Any number of blocks on table

• Blocks are picked up and put down by the arm

• Arm can hold only one block at a time

A
B

C
Table

A

B

C
Table

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 20019

The Blocks World II
• Objects

– Blocks: A, B, C
– Table: Table

• States
– Conjunctions of ground literals
– On(A, B), On(C, Table), Clear(B), Handempty, Holding(C)

• Actions
– Operator schemas with variables
– Pickup(x), Putdown(x, y)

• Domain Axioms
– “At most one block on top of another”
– “Hand must be empty and block must be clear to pick it up”

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200110

Logic / Situation Calculus
• Add State Variables to Each Predicate

Clear(x, s), Handempty(s)

• Define Domain Axioms
∀ x, s Clear(x, s) ⇔ ¬∃y On(y, x, s)

∀ x, y, z : Block On(y, x, s) ∧ On(z, x, s) ⇔ y = z
∀ x: Block ¬On(x, x, s)

• Do Operator Maps to State Resulting from Performing Actions
Holding(x, Do(Pickup(x), s))

• Actions are State Mappings with Preconditions and Effects
Handempty(s) ∧ Clear(x, s) ∧ a=Pickup(x) ⇒

Holding(x, Do(a, s)) ∧ (∀ y On(x, y, s) ⇒ ¬On(x, y, Do(a, s)))

• Represent Initial and Goal States
On(B, A, S0) ∧ On(A, Table, S0) ∧ On(C, Table, S0) ∧ Clear(C, S0)

∃s On(C, A, s) ∧ On(B, Table, s)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200111

The Frame Problem
• Must Explicitly Declare What Does Not Change as a Result of

Doing Actions

• Frame Axioms
On(x, y, s) ∧ a ≠ Pickup(x) ⇒ On(x, y, Do(a, s))

¬ On(x, y, s) ∧ a ≠ Putdown(x, y) ⇒ ¬ On(x, y, Do(a, s))

Holding(x, s) ∧ a ≠ Putdown(x, y) ∧ a ≠ Drop ⇒ Holding(x, Do(a, s))

¬ Holding(x, s) ∧ a ≠ Pickup(x) ⇒ ¬ Holding(x, Do(a, s))

• Writing Frame Axioms is Tedious, Error Prone and Inefficient
– Two axioms for each predicate

– Length of axioms proportional to number of actions

– No computationally tractable FOL frame axioms

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200112

STRIPS-Like Representations
• Specialized (Simplified) Representations of Actions

– Conjunctive preconditions and effects (no conditionals)
– No quantification

• Implicit Solution to Frame Problem
– State is database of ground literals
– If literal is not in database, assumed to be false
– Effects of actions represented using add and delete lists

(insert and remove literals from database)
– No explicit representation of time
– No logical inference rules

• May Expand Branching Factor of Search Space
– Often need to add extra actions and extra effects to

compensate for simplified representation

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200113

STRIPS Meets the Blocks World
• Action Representation

Pickup_from_table(b)

Pre: Block(b), Handempty
Clear(b), On(b, Table)

Add: Holding(b)

Delete: Handempty,
On(b, Table)

Putdown_on_table(b)

Pre: Block(b), Holding(b)

Add: Handempty,
On(b, Table)

Delete: Holding(b)

Pickup_from_block(b, c)

Pre: Block(b), Handempty
Clear(b), On(b, c), Block(c)

Add: Holding(b), Clear(c)

Delete: Handempty,
On(b, c)

Putdown_on_block(b, c)

Pre: Block(b), Holding(b)
Block(c), Clear(c), b ≠ c

Add: Handempty, On(b, c)

Delete: Holding(b), Clear(c)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200114

STRIPS State Transitions

A B C

A
B C A B

C
A

B
C

A
B C

A
B C A

B
C A

B
C A B

C
A B

C

A
B

C AB
C A

B C A B
C A

BC A
B
C

A
B

C
A
B

C A
B
C A

B
C A

B
C

A

B
C

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200115

Zen and the Art of Planning

Eat(person, thing)

Pre: Enlightened(person), Zen(thing),
person ≠ thing

Add: Satisfied,
Consumed(person, thing)

Delete: Enlightened(person),
Zen(thing)

Man(person)

Pre: Zen(person), Satisfied,
Vigorous(person)

Add: Enlightened(person)

Delete: Vigorous(person), Satisfied

Drink(person, thing)

Pre: Zen(person), Satisfied,
Consumed(person, thing)

Add: Enlightened(person),
Zen(thing)

Delete: Consumed(person, thing),
Satisfied

Woman(person)

Pre: Enlightened(person)

Add: Vigorous(person), Satisfied

Delete: Enlightened(person)

Initial: Consumed(A, Fish), Vigorous(Fish), Vigorous(Tea), Zen(A), Zen(Tea)

Goal: Vigorous(A) , Consumed(Tea, Fish)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200116

More Realistic Action Representations I
• Conditional Effects

Pickup (b)
Pre: Block(b), Handempty, Clear(b), On(b, x)
Add: Holding(b)

if (Block(x)) then Clear(x)
Delete: Handempty, On(b, x)

• Quantified Effects
Move (o, x)

Pre: At(o, y), At(Robot, y)
Add: At(o, x), At(Robot, x)

forall (Object(u)) [if (In(u, o)) then At(u, y)]
Delete: At(o, y), At(Robot, y), forall (Object(u)) [if (In(u, o)) then At(u, y)]

• Disjunctive and Negated Preconditions
Or[Holding(x), Not[Lighter_Than_Air(x)]]

• All these extensions can be emulated by adding actions

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200117

More Realistic Action Representations II
• These extensions make the planning problem significantly

harder

• Inference Operators / Axioms
Clear(x) iff forall(Block(y))[Not[On(y, x)]]

• Functional Effects
Move (o, x)

Pre: At(o, y), At(Robot, y), Fuel(f), f � Fuel_Needed(y, x)

Add: At(o, x), At(robot, x), Fuel(f – Fuel_Needed(y, x)),
forall (Object(u)) [if (In(u, o)) then At(u, y)]

Delete: At(o, y), At(Robot, y), Fuel(f),
forall (Object(u)) [if (In(u, o)) then At(u, y)]

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200118

More Realistic Action Representations III
• These extensions make the problem even harder still

• Disjunctive Effects
Pickup_from_block(b)

Pre: Block(b), Handempty, Clear(b), On(b, c), Block(c)

C1: Add: Clear(c), Holding(b); Delete: On(b, c), Handempty

C2: Add: Clear(c), On(b, Table); Delete: On(b, c)

C3: Add: ; Delete:

• Probabilistic Effects
– Add probabilities to contexts of disjunctive effects

• Other Extensions
– External events Sensing actions

– Concurrent events Actions with duration

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200119

Search Techniques for Planning
• Planning Involves Search Through a Search Space

– How to conduct the search

– How to represent the search space

– How to evaluate the solutions

• Non-Deterministic Choice Points Determine Backtracking
– Choice of actions

– Choice of variable bindings

– Choice of temporal orderings

– Choice of subgoals to work on

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200120

Progression vs. Regression
• Progression (forward-chaining):

– (Non-deterministically) choose action whose preconditions are
satisfied

– Continue until goal state is reached

• Regression (backward-chaining):
– (Non-deterministically) choose action that has an effect that

matches an unachieved subgoal
– Add unachieved preconditions to set of subgoals
– Continue until set of unachieved subgoals is empty

Progression: + Simple algorithm (“forward simulation”)
- Often large branching factor
- Unfocused search

Regression: + Focused on achieving goals
+ Often more efficient
- Need to reason about actions
- Regression is incomplete, in general

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200121

Linear vs. Non-Linear
• Linear:

– Solve one goal at a time
– Search with a stack of unachieved goals

• Non-Linear:
– Interleave attending to subgoals
– Search with a set of unachieved goals

Linear: + Simple search strategy
+ Efficient if goals are indeed independent
- May produce suboptimal plans
- Incomplete

Non-Linear: + Complete
+ Can produce shorter plans
- Larger search space

(does not take advantage of goal independence)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200122

State-Space vs. Plan-Space
• State-Space:

– Search space is a set of states of the world
– Transitions between states are actions
– Plan is a path through the space

• Plan-Space:
– Search space is a set of plans (including partial plans)
– Initial state is null plan
– Transitions are plan operators (ad action, add ordering, etc.)

State-Space: + Easy to determine which subgoals are achieved
and which actions are applicable

- Intractable to represent concurrent actions

Plan-Space: + Search order not same as plan execution order
- Hard to determine what is true in a plan

Advantages to maintaining both state and plans (ala Prodigy)

Planning, Execution & Learning: Repr & Search Simmons, Veloso : Fall 200123

Total vs. Partial Order
• Total Order:

– Plan is always a strict sequence of actions

• Partial Order:
– Plan steps may be unordered
– Plan may be linearized prior to execution

Total Order: + Simpler planning algorithm
- No concurrent plans
- May be forced to make unnecessary decisions

Partial Order: + Least commitment
+ Easily handles concurrent plans
- Hard to determine which goals are achieved

at any given time
- More complex set of plan operators

