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The Problem With PoliciesThe Problem With Policies
• Very Expensive to Generate

• Very Expensive to Store

• May be Expensive to Access
– Markov policies (linear in size of state space)
– Universal and Teleo-Reactive plans (logarithmic)
– RAPs (bounded)
– Real-time search (bounded)
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Policy IssuesPolicy Issues
• How to Represent Policies for Efficient Retrieval

• Which Plans/Policies to Cache

• When to Plan and When to Execute/React

• How to Avoid Having Sensing Become the Bottleneck
– Limited sensors
– Partially observable environment

• How to Detect/Handle Cyclic Behavior
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Universal Plans Universal Plans (Schoppers 1987)(Schoppers 1987)

• Complete Mapping From Sensors to Conditions
– Can take duration of actions into account
– Can take advantage of dynamics of environment
– Influenced by PRS (Georgeoff), REX (Kaelbling),

and robotics (control theory)

• Implements Policy as Decision Tree
– Answers “what to do next”

• Sequencing encoded in structure of decision tree
• No notion of error

– Treats planning & plan selection as classification problem

• Can be Synthesized Automatically
– Uses back-chaining, non-linear planner
– Break into action-sized chunks, with appropriate sensing actions
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Universal BlockUniversal Block--Stacking PlanStacking Plan
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Dealing With the State ExplosionDealing With the State Explosion
• Decision Trees Make Classification More Efficient

– Proportional to number of features (although tree itself is 
exponential)

• Use General (Variablized) Rules

• Use Efficient State Representations (e.g. BDDs)

• Use at Multiple Levels of Abstraction
– Coarse-grained and fine-grained universal plans

Ultimately, in Most Cases, Need to Choose What to Plan For…
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Entropy Reduction Engine (ERE)Entropy Reduction Engine (ERE)
(Drummond & Bresina, 1990)(Drummond & Bresina, 1990)

• Overall Architecture for Generating and Executing 
Reactive Plans
– Incrementally compiled from domain models

– Reactor: Choose applicable rule and apply action
– Projector: Produce “plans” and compile rules
– Reductor: Decompose problem into subproblems

Problem
Reduction

Temporal
Projection

Execution
(Reactor)

Strategies Rules Actions

Sensor Data

Causal Theory & Goals
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Situated Control Rules (SCRs)Situated Control Rules (SCRs)
• “If-Then” Rule Describing Action to Take in Given 

Situation
– Represents single step along way to achieving a goal

• “if <situation> & <goal> then <action>”
• “local control program”
• Similar to CIRCA’s TAPs

– Utilizes both sensor and internal state information
– May not have applicable rules for all situations

• Opportunistically created by the projector
– Does not address the problem of choosing (arbitrating) 

amongst applicable rules
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ERE’s Temporal ProjectorERE’s Temporal Projector
• Probabilistic, Linear Planner

– Handles goals of achievement, prevention, and maintenance
– Forward projection of non-deterministic actions

• Can handle exogenous events
• Uses beam search to control projection (estimate of 

work remaining to achieve goal)
– “Robustify” initial plan by adding contingency branches

• Attend to high probability deviations

• Compilation of SCRs
– Uses goal regression and explanation-based learning (EBL) 

to form a generalization of <state, action, goal> triples
– “Anytime” nature ensures reactivity
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AgentAgent--Centered Search Centered Search (Koenig 1997)(Koenig 1997)

• Allow Bounded Amount of Search (Lookahead) to 
Determine Next Action to Execute
– Incrementally update value function

• Incrementally create optimal policy
• Akin to reinforcement learning

– Can trade off planning time (=> plan quality) and execution speed
– Handles uncertainty by acting, which may gain information

• Several Theoretical Results
– Complexity of class of agent-centered search algorithms
– Influence domain properties can have on complexity
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MinMin--Max LRTA*Max LRTA*
• Extension to Non-Deterministic Domains of 

Korf’s Learning Real-Time A* Algorithm
– No probabilistic information: Assume worst case for agent 

(where nature is the “opponent”)
– u(s) = -1 + max a∈A(s) min s′∈succ(s, a) u(s′)
– Can eventually learn optimal policy

• Also learns while trying to reach goal for the first time
Observe: OWOW

B3N B3S
H2N H2S
K2N K2S
I4E I4WG

Action: Forward or Reverse?
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Complexity ResultsComplexity Results
• Min-Max LRTA* has Tight Bounds of O(n2) Action 

Occurrences Over All Domains
– No algorithm that performs constant lookahead can do 

better, over all possible domains

• Q-Learning is O(n3) if it uses “dense” reward structure
– Penalize actions or initialize Q-values to non-zero
– Otherwise can be exponential

• Undirected and Directed Eulerian Domains are “Easier” 
to Search, in General

• Domains with Small Maximum Goal Distance are 
“Easier” to Search, on Average


