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Approximating Value FunctionApproximating Value Function
• Use Function Approximator with “Better” Properties than 

Piece-Wise Linear
– Continuous (differentiable), non-linear
– Typically use on the order of one vector per action

• Comparisons
+ Generally much more efficient
– May poorly represent optimal solution (however, better 

function approximation usually implies better results)
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SPOVA Algorithm (Parr, 1995)SPOVA Algorithm (Parr, 1995)
• Approach

– Use a small set of vectors to represent the value function
– Approximate the value function by a smooth (differentiable) 

function
V(b) = maxv ∈Ψ (v • b)

≈ {∑ v ∈Ψ' v • b)k}1/k

– Use gradient descent to adjust components of the vectors

E(b) = V(b) – β{maxa{R(a, b) + γ ∑ b' p(b' | a, b) V(b')}}

vi,t+1(s) = vi,t(s) + αE(b)b(s)(vi • b)k-1/V(b)k-1
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Approximating Belief Space Approximating Belief Space 
• Use Grid-Based Approximation

– Discretize belief space: Place finite grid over belief simplex
– Evaluate value function at grid points
– Interpolate

• Regular Grid (Lovejoy)
+ Simple method, easy interpolation
– Exponential space needed

• Non-Regular Grid (Hauskrecht)
+ More accurate – tries to follow value contours
– Interpolation is difficult

• Variable-Resolution Grid (Zhou & Hansen)
+ Fairly accurate – grid points added where distinctions are needed
+ Interpolation is fairly easy – add virtual grid points
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Trajectory Trees (Kearns, et.al.)Trajectory Trees (Kearns, et.al.)
• Choose Policy Based on Monte-Carlo Sampling

– Restricted set of policies (Π)
– Complexity depends on VC dimension of Π, rather than on 

state space
– Assumes a generative model of POMDP

• Questions: 
– How many samples need generated to evaluate each policy?
– How can you reuse samples from one policy to the next?

• Solution:
– Generate trajectory tree, rather than simple trajectory
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Trajectory TreesTrajectory Trees

• Generate Tree Stochastically
– Fixed Horizon Hε: Hε’th step can contribute at most ε/2 to total 

discounted return
– Can be used to evaluate any policy

• Provable Bounds
– Vπ(S0) = (∑i=1,m R(π, Ti))/m
– m = O((Vmax/ε)2 ⋅ Hε ⋅ VC(Π) + log(1/δ))

• With probability (1-δ), you are within ε of the true value of the 
policy

S0, O0

s’, o’ s’’, o’

A1 r’ r’’ A2
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Hierarchical POMDPs (Pineau)Hierarchical POMDPs (Pineau)
• Basic Idea:

– Break the problem into many “related” POMDPs
– Each smaller POMDP has only a subset of actions (and, 

possibly, observations)
– Value iteration has exponential run time: O((|S|2|A|Γn-1

|O|)
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ExampleExample
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POMDP:

So= {Meds, Kitchen, Bedroom}

Ao = {ClarifyTask, CheckMeds, GoToKitchen, GoToBedroom}

Oo = {Noise, Meds, Kitchen, Bedroom}

0.8

Value Function:

P(MedsState)P(BedroomState)

GoToKitchen

ClarifyTask

GoToBedroom
CheckMeds

1

00
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Hierarchical Action PartitioningHierarchical Action Partitioning

Act

Move CheckMeds

ClarifyTask

ClarifyTask

GoToKitchen GoToBedroom

Local Value Function and Policy 
Move Controller



Modeling Abstract ActionsModeling Abstract Actions
Problem:  Need parameters for abstract action Move

Solution:  Use the local policy of corresponding low-level controller

General form:  Pr ( sj | si, ak
abstract ) = Pr ( sj | si, Policy(ak

abstract,si) )

Example:
Pr ( sj | MedsState, Move )
= Pr ( sj | MedsState, ClarifyTask )

Policy(Move,si):

ClarifyTask

GoToKitchen

GoToBedroom

P(MedsState)
1

00
P(BedroomState)
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Greedy Approaches to POMDP PlanningGreedy Approaches to POMDP Planning
• Solve POMDP as if it were an MDP

• Choose Action Based on Current Belief State
– “most likely” – argmaxa(Q(argmaxs(b(s)), a)
– “voting” – argmaxa(∑ s∈S, a= argmaxa'Q(s, a') b(s) )
– “Q-MDP” – argmaxa(∑ s∈S,b(s) Q(s, a))

• Essentially, try to act optimally as if the POMDP were to 
become observable after the next action
– Cannot plan to do actions just to gain information
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Greedy Approaches to POMDP PlanningGreedy Approaches to POMDP Planning
• Extensions to Allow Information-Gathering Actions 

(Cassandra 1996)
– Compute entropy H(b) of belief state
– If entropy is below a threshold, use a greedy method

Z(a, b) for choosing action
– If entropy is above a threshold, choose the action that 

reduces expected entropy the most
EE(a, b) = ∑ b' p(b' | a, b) H(b')

π(s) = argmaxa Z(a, b) if H(b) < t
argmina EE(a, b) otherwise


