
Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20011

Planning, Execution & Learning:Planning, Execution & Learning:
Planning with POMDPs (II)Planning with POMDPs (II)

Reid Simmons

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20012

Approximating Value FunctionApproximating Value Function
• Use Function Approximator with “Better” Properties than

Piece-Wise Linear
– Continuous (differentiable), non-linear
– Typically use on the order of one vector per action

• Comparisons
+ Generally much more efficient
– May poorly represent optimal solution (however, better

function approximation usually implies better results)

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20013

SPOVA Algorithm (Parr, 1995)SPOVA Algorithm (Parr, 1995)
• Approach

– Use a small set of vectors to represent the value function
– Approximate the value function by a smooth (differentiable)

function
V(b) = maxv ∈Ψ (v • b)

≈ {∑ v ∈Ψ' v • b)k}1/k

– Use gradient descent to adjust components of the vectors

E(b) = V(b) – β{maxa{R(a, b) + γ ∑ b' p(b' | a, b) V(b')}}

vi,t+1(s) = vi,t(s) + αE(b)b(s)(vi • b)k-1/V(b)k-1

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20014

Approximating Belief Space Approximating Belief Space
• Use Grid-Based Approximation

– Discretize belief space: Place finite grid over belief simplex
– Evaluate value function at grid points
– Interpolate

• Regular Grid (Lovejoy)
+ Simple method, easy interpolation
– Exponential space needed

• Non-Regular Grid (Hauskrecht)
+ More accurate – tries to follow value contours
– Interpolation is difficult

• Variable-Resolution Grid (Zhou & Hansen)
+ Fairly accurate – grid points added where distinctions are needed
+ Interpolation is fairly easy – add virtual grid points

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20015

Trajectory Trees (Kearns, et.al.)Trajectory Trees (Kearns, et.al.)
• Choose Policy Based on Monte-Carlo Sampling

– Restricted set of policies (Π)
– Complexity depends on VC dimension of Π, rather than on

state space
– Assumes a generative model of POMDP

• Questions:
– How many samples need generated to evaluate each policy?
– How can you reuse samples from one policy to the next?

• Solution:
– Generate trajectory tree, rather than simple trajectory

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20016

Trajectory TreesTrajectory Trees

• Generate Tree Stochastically
– Fixed Horizon Hε: Hε’th step can contribute at most ε/2 to total

discounted return
– Can be used to evaluate any policy

• Provable Bounds
– Vπ(S0) = (∑i=1,m R(π, Ti))/m
– m = O((Vmax/ε)2 ⋅ Hε ⋅ VC(Π) + log(1/δ))

• With probability (1-δ), you are within ε of the true value of the
policy

S0, O0

s’, o’ s’’, o’

A1 r’ r’’ A2

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20017

Hierarchical POMDPs (Pineau)Hierarchical POMDPs (Pineau)
• Basic Idea:

– Break the problem into many “related” POMDPs
– Each smaller POMDP has only a subset of actions (and,

possibly, observations)
– Value iteration has exponential run time: O((|S|2|A|Γn-1

|O|)

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20018

ExampleExample

M

BK

E

0.1

0.1 0.1

0.1

0.1

0.1

0.8

0.8

POMDP:

So= {Meds, Kitchen, Bedroom}

Ao = {ClarifyTask, CheckMeds, GoToKitchen, GoToBedroom}

Oo = {Noise, Meds, Kitchen, Bedroom}

0.8

Value Function:

P(MedsState)P(BedroomState)

GoToKitchen

ClarifyTask

GoToBedroom
CheckMeds

1

00

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 20019

Hierarchical Action PartitioningHierarchical Action Partitioning

Act

Move CheckMeds

ClarifyTask

ClarifyTask

GoToKitchen GoToBedroom

Local Value Function and Policy
Move Controller

Modeling Abstract ActionsModeling Abstract Actions
Problem: Need parameters for abstract action Move

Solution: Use the local policy of corresponding low-level controller

General form: Pr (sj | si, ak
abstract) = Pr (sj | si, Policy(ak

abstract,si))

Example:
Pr (sj | MedsState, Move)
= Pr (sj | MedsState, ClarifyTask)

Policy(Move,si):

ClarifyTask

GoToKitchen

GoToBedroom

P(MedsState)
1

00
P(BedroomState)

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 200111

Greedy Approaches to POMDP PlanningGreedy Approaches to POMDP Planning
• Solve POMDP as if it were an MDP

• Choose Action Based on Current Belief State
– “most likely” – argmaxa(Q(argmaxs(b(s)), a)
– “voting” – argmaxa(∑ s∈S, a= argmaxa'Q(s, a') b(s))
– “Q-MDP” – argmaxa(∑ s∈S,b(s) Q(s, a))

• Essentially, try to act optimally as if the POMDP were to
become observable after the next action
– Cannot plan to do actions just to gain information

Planning, Execution & Learning: POMDP II Simmons, Veloso : Fall 200112

Greedy Approaches to POMDP PlanningGreedy Approaches to POMDP Planning
• Extensions to Allow Information-Gathering Actions

(Cassandra 1996)
– Compute entropy H(b) of belief state
– If entropy is below a threshold, use a greedy method

Z(a, b) for choosing action
– If entropy is above a threshold, choose the action that

reduces expected entropy the most
EE(a, b) = ∑ b' p(b' | a, b) H(b')

π(s) = argmaxa Z(a, b) if H(b) < t
argmina EE(a, b) otherwise

