Planning, Execution & Learning: Planning with POMDPs (II)

Reid Simmons

Approximating Value Function

- Use Function Approximator with "Better" Properties than Piece-Wise Linear
 - Continuous (differentiable), non-linear
 - Typically use on the order of one vector per action
- Comparisons
 - + Generally much more efficient
 - May poorly represent optimal solution (however, better function approximation usually implies better results)

SPOVA Algorithm (Parr, 1995)

- Approach
 - Use a small set of vectors to represent the value function
 - Approximate the value function by a smooth (differentiable) function

$$V(b) = \max_{v \in \Psi} (v \bullet b)$$

$$\approx \{ \sum_{v \in \Psi'} v \bullet b \}^{k} \}^{1/k}$$

Use gradient descent to adjust components of the vectors

$$E(b) = V(b) - \beta \{ \max_{a} \{ R(a, b) + \gamma \sum_{b'} p(b' | a, b) V(b') \} \}$$

$$v_{i,t+1}(s) = v_{i,t}(s) + \alpha E(b)b(s)(v_i \bullet b)^{k-1}/V(b)^{k-1}$$

Approximating Belief Space

- Use Grid-Based Approximation
 - Discretize belief space: Place finite grid over belief simplex
 - Evaluate value function at grid points
 - Interpolate
- Regular Grid (Lovejoy)
 - + Simple method, easy interpolation
 - Exponential space needed
- Non-Regular Grid (Hauskrecht)
 - + More accurate tries to follow value contours
 - Interpolation is difficult
- Variable-Resolution Grid (Zhou & Hansen)
 - + Fairly accurate grid points added where distinctions are needed
 - + Interpolation is fairly easy add virtual grid points

Simmons, Veloso: Fall 2001

Trajectory Trees (Kearns, et.al.)

- Choose Policy Based on Monte-Carlo Sampling
 - Restricted set of policies (∏)
 - Complexity depends on VC dimension of Π , rather than on state space
 - Assumes a generative model of POMDP
- Questions:
 - How many samples need generated to evaluate each policy?
 - How can you reuse samples from one policy to the next?
- Solution:
 - Generate trajectory *tree*, rather than simple trajectory

Trajectory Trees

- Generate Tree Stochastically
 - Fixed Horizon H_{ϵ} : H_{ϵ} 'th step can contribute at most $\epsilon/2$ to total discounted return
 - Can be used to evaluate any policy
- Provable Bounds
 - $-V^{\pi}(S0) = (\sum_{i=1,m} R(\pi, T_i))/m$
 - $m = O((V_{\text{max}}/\epsilon)^2 \cdot H_{\epsilon} \cdot VC(\Pi) + \log(1/\delta))$
 - With probability (1- δ), you are within ϵ of the true value of the policy

Hierarchical POMDPs (Pineau)

• Basic Idea:

- Break the problem into many "related" POMDPs
- Each smaller POMDP has only a subset of *actions* (and, possibly, observations)
- Value iteration has exponential run time: $O((|S|^2|A|\Gamma_{n-1}^{|O|}))$

Example

Value Function:

S_o= {Meds, Kitchen, Bedroom}

A_o = {ClarifyTask, CheckMeds, GoToKitchen, GoToBedroom}

 $O_0 = \{ \text{Noise}, \text{Meds}, \text{Kitchen}, \text{Bedroom} \}$

Hierarchical Action Partitioning

0.4

Simmons, Veloso: Fall 2001

Modeling Abstract Actions

Problem: Need parameters for abstract action Move

Solution: Use the local policy of corresponding low-level controller

General form:
$$Pr(s_j | s_i, a_k^{abstract}) = Pr(s_j | s_i, Policy(a_k^{abstract}, s_i))$$

Example:

$$Pr(s_j | MedsState, Move)$$

$$= Pr(s_j | MedsState, ClarifyTask)$$
Policy(Move, s_i):

Greedy Approaches to POMDP Planning

- Solve POMDP as if it were an MDP
- Choose Action Based on Current Belief State

```
- "most likely" - \operatorname{argmax}_{a}(Q(\operatorname{argmax}_{s}(b(s)), a))
```

```
- "voting" - argmax<sub>a</sub>(\sum_{s \in S, a = \operatorname{argmax}_{a'}Q(s, a')} b(s))
```

- "Q-MDP" $\operatorname{argmax}_a(\sum_{s \in S} b(s) Q(s, a))$
- Essentially, try to act optimally as if the POMDP were to become observable after the next action
 - Cannot plan to do actions just to gain information

Greedy Approaches to POMDP Planning

- Extensions to Allow Information-Gathering Actions (Cassandra 1996)
 - Compute entropy H(b) of belief state
 - If entropy is below a threshold, use a greedy method
 Z(a, b) for choosing action
 - If entropy is above a threshold, choose the action that reduces expected entropy the most

$$EE(a, b) = \sum_{b'} p(b' | a, b) H(b')$$

$$\pi(s) = \operatorname{argmax}_a Z(a, b)$$
 if $H(b) < t$
 $\operatorname{argmin}_a EE(a, b)$ otherwise