Planning, Execution & Learning: Monitoring and Diagnosis

Reid Simmons

Why Monitor?

- Detect Internal Faults
 - Hardware failure
 - Software errors
- Detect Unexpected Contingencies
 - Changes in environment
 - Actions not going according to plan
- Detect Unexpected Opportunities
- Compensate for Incomplete Policies
 - Behaviors not available for every state

Terminology

- Expectation: Anticipated Future State of the World
- Exception: Violated Expectation
 - Divergence between predicted state and observations
- **Monitoring**: Detect Exceptions
- **Diagnosis**: Isolate Fault From Symptoms
- Recovery: Bring Plan into Alignment with Observations

Approaches

#1 Fault Models

- Explicitly enumerate fault modes
- One-to-one correspondence between fault mode and fault
- + Diagnosis is easy
- Hard to anticipate all possibilities

#2 Expectation-Based

- Compare model of expected behavior against observations
- Trace back from symptoms to find faulty components
- + Easier to specify "nominal" behaviors
- Diagnosis is hard (and often ambiguous)

Approaches are not inconsistent: May be combined

Progress-Based Approach (Simmons)

- Deals with *Unanticipated* Exceptions
- Track *Progress* Towards Goal
 - Lack of progress/slower progress than expected
- Maintain Hierarchy of Monitors
 - Detect exceptions at different temporal scales
 - More general monitors handle wider range of situations
 - More specific monitors trigger sooner and impart more diagnostic information

Monitoring Xavier's Navigation

- Goal: Navigate to location X while avoiding obstacles
- **Expectations for Progressing Towards Goal**
 - *Time-Out*: Robot should reach goal *K* standard deviations after average travel time (based on path)
 - **Position**: Deviation between predicted position (based on path) and observed (most likely) position should not increase "too fast"
 - **Looping**: Robot should not return to a given state, traveling in the opposite direction (detect cycles in POMDP navigation)
 - **Spinning**: Robot should not oscillate in one place for "too long"

Profile-Based Approach (Miller)

- Dynamic Creation of Expectations
 - Simulate plan
 - Record temporal profile of sensor values
 - Account for uncertainty (actuator, sensor, environment)

- Monitor Expectations for Each Sensor
 - Associate reflex action with profile violations

Livingstone (Williams & Nayak)

- Developed at NASA Ames
 - Used on Remote Agent for Mode Identification and Recovery
- Based on Symbolic, Qualitative Models
 - State transition diagrams (nominal and fault modes)
 - Inter-connections between components
 - Propositional relationships between variables
- Approach
 - Use models and commanded inputs to generate predications
 - Detect inconsistencies between predictions and observations
 - Find "conflict set" of components whose malfunction can explain discrepancy
 - Uses very efficient "Truth Maintenance System"

Xavier Component Models

Xavier Component Models

Model-Based Monitoring of Xavier

- Dealing with Observations
 - Transform sensor readings (e.g., encoder counts, velocities)
 into qualitative values (negative, zero, positive, small, large)
 - May be context dependent (get context from model)
 - May need to be learned
- Dealing with Commands
 - Predict state transitions based on behavior commands
 - Need to take command latency into account
- Integrates Easily into Publish/Subscribe Architecture
- Runs in Real Time (in Lisp!) On-Board the Robot

Monitoring Hybrid Systems

- Combines Continuous and Discrete Dynamics
 - Discrete mode depends on continuous state
 - Continuous dynamics depends on mode
- Problem is Monitoring in Face of Uncertainty
 - Often cannot directly observe mode or continuous state
- Approaches
 - -Track most likely state (*Livingstone*)
 - -Discretize continuous state and track using POMDP(Fernandez)

12

- -Approximate continuous state (Washington)
- -Approximate belief state (Verma)

Markov & Kalman Models (Washington)

- Representation
 - Represent continuous state using bank of Kalman filters
 - Represent discrete mode using POMDP

Estimation

- Each mode is associated with different KF model
 - Different constraints; Different gains
- KF used to estimate observation probabilities for POMDP

13

• $p(o \mid s) \approx p(o \mid KF) \bullet p(KF \mid s)$

Markov & Kalman Models

- Pros
 - + Simple continuous models
 - + Computationally very efficient
 - + Captures hybrid dynamics
- Cons
 - Noise may not be Gaussian
 - Evolution of Kalman Filters depend on initial conditions,
 which in turn depend on when discrete state is entered
 - Limit number of filters

Particle-Filter Based Approach (Verma)

Representation

- Represent complete continuous and discrete state
- Represent complete transition and observation probabilities
- Approximate belief state using samples (*Particle Filter*)

Estimation

- Update samples according to transition probabilities
- Reweight according to observation probabilities
- Resample based on weightings

Particle-Filter Based Approach

Pros

- + Can use high fidelity prediction models
- + Non-parametric probability distribution
- + Near-constant time computation (independent of size of state space)

Cons

- Does not track low probability events well
 - Sample from mixture of prior and observation distributions
 - Sample from mixture of prior and utility (loss)
 - Focuses on high-risk parts of state space

16