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Why Monitor?Why Monitor?
• Detect Internal Faults

– Hardware failure
– Software errors

• Detect Unexpected Contingencies
– Changes in environment
– Actions not going according to plan

• Detect Unexpected Opportunities

• Compensate for Incomplete Policies
– Behaviors not available for every state
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TerminologyTerminology
• Expectation: Anticipated Future State of the World

• Exception: Violated Expectation
– Divergence between predicted state and observations

• Monitoring: Detect Exceptions

• Diagnosis: Isolate Fault From Symptoms

• Recovery: Bring Plan into Alignment with Observations
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ApproachesApproaches
#1Fault Models

– Explicitly enumerate fault modes
– One-to-one correspondence between fault mode and fault
+ Diagnosis is easy
- Hard to anticipate all possibilities

#2Expectation-Based
– Compare model of expected behavior against observations
– Trace back from symptoms to find faulty components
+ Easier to specify “nominal” behaviors
- Diagnosis is hard (and often ambiguous)

Approaches are not inconsistent: May be combined
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ProgressProgress--Based Approach Based Approach (Simmons)(Simmons)
• Deals with Unanticipated Exceptions

• Track Progress Towards Goal
– Lack of progress/slower progress than expected

• Maintain Hierarchy of Monitors
– Detect exceptions at different temporal scales
– More general monitors handle wider range of situations
– More specific monitors trigger sooner and impart more 

diagnostic information
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Monitoring Xavier’s NavigationMonitoring Xavier’s Navigation
• Goal: Navigate to location X while avoiding obstacles

• Expectations for Progressing Towards Goal
– Time-Out: Robot should reach goal K standard deviations 

after average travel time (based on path)
– Position: Deviation between predicted position (based on 

path) and observed (most likely) position should not increase 
“too fast”

– Looping: Robot should not return to a given state, traveling in 
the opposite direction (detect cycles in POMDP navigation)

– Spinning: Robot should not oscillate in one place for “too 
long”
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ProfileProfile--Based Approach Based Approach (Miller)(Miller)
• Dynamic Creation of Expectations

– Simulate plan
– Record temporal profile of sensor values
– Account for uncertainty (actuator, sensor, environment)

• Monitor Expectations for Each Sensor
– Associate reflex action with profile violations
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Livingstone Livingstone (Williams & Nayak)(Williams & Nayak)
• Developed at NASA Ames

– Used on Remote Agent for Mode Identification and Recovery

• Based on Symbolic, Qualitative Models
– State transition diagrams (nominal and fault modes)
– Inter-connections between components
– Propositional relationships between variables

• Approach
– Use models and commanded inputs to generate predications
– Detect inconsistencies between predictions and observations
– Find “conflict set” of components whose malfunction can 

explain discrepancy
• Uses very efficient “Truth Maintenance System”
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Xavier Component ModelsXavier Component Models
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Xavier Component ModelsXavier Component Models
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ModelModel--Based Monitoring of XavierBased Monitoring of Xavier
• Dealing with Observations

– Transform sensor readings (e.g., encoder counts, velocities) 
into qualitative values (negative, zero, positive, small, large)

– May be context dependent (get context from model)
– May need to be learned

• Dealing with Commands
– Predict state transitions based on behavior commands
– Need to take command latency into account

• Integrates Easily into Publish/Subscribe Architecture

• Runs in Real Time (in Lisp!) On-Board the Robot
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Monitoring Hybrid SystemsMonitoring Hybrid Systems
• Combines Continuous and Discrete Dynamics

– Discrete mode depends on continuous state
– Continuous dynamics depends on mode

• Problem is Monitoring in Face of Uncertainty
– Often cannot directly observe mode or continuous state

•Approaches
–Track most likely state (Livingstone)
–Discretize continuous state and track using POMDP(Fernandez)
–Approximate continuous state (Washington)
–Approximate belief state (Verma)
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Markov & Kalman Models Markov & Kalman Models (Washington)(Washington)
• Representation

– Represent continuous state using bank of Kalman filters
– Represent discrete mode using POMDP

• Estimation
– Each mode is associated with different KF model

• Different constraints; Different gains
– KF used to estimate observation probabilities for POMDP

• p(o | s) ≈ p(o | KF) • p(KF | s)
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Markov & Kalman ModelsMarkov & Kalman Models

• Pros
+ Simple continuous models
+ Computationally very efficient
+ Captures hybrid dynamics

• Cons
– Noise may not be Gaussian
– Evolution of Kalman Filters depend on initial conditions, 

which in turn depend on when discrete state is entered
• Limit number of filters
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ParticleParticle--Filter Based Approach Filter Based Approach (Verma)(Verma)
• Representation

– Represent complete continuous and discrete state
– Represent complete transition and observation probabilities
– Approximate belief state using samples (Particle Filter)

• Estimation
– Update samples according to

transition probabilities
– Reweight according to

observation probabilities
– Resample based on weightings
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ParticleParticle--Filter Based ApproachFilter Based Approach
• Pros

+ Can use high fidelity prediction models
+ Non-parametric probability distribution
+ Near-constant time computation (independent of size of 

state space)

• Cons
– Does not track low probability events well

• Sample from mixture of prior and observation 
distributions

• Sample from mixture of prior and utility (loss)
– Focuses on high-risk parts of state space


