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Different Aspects of “Machine
Learning”

• Supervised learning
– Classification - concept learning
– Learning from labeled data
– Function approximation

• Unsupervised learning
– Data is not labeled
– Data needs to be grouped, clustered
– We need distance metric

• Control and action model learning
– Learning to select actions efficiently
– Feedback: goal achievement, failure, reward
– Search control learning, reinforcement learning
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Search Control Learning
• Improve search efficiency, plan quality

• Learn heuristics

(if (and (goal (enjoy weather))
(goal (save energy))
(state (weather fair)))

(then (select action RIDE-BIKE)))
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Learning Opportunities in Planning
• Learning to improve planning efficiency

• Learning the domain model

• Learning to improve plan quality

• Learning a universal plan

Which action model,
which planning algorithm,

which heuristic control
is the most efficient for a given task?
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Reinforcement Learning
• A variety of algorithms to address:

– learning the model
– converging to the optimal plan.
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Discounted Rewards
• “Reward” today versus future (promised) reward

• $100K + $100K + $100K + . . .
INFINITE!

• Future rewards not worth as much as current.

• Assume reality . . . : discount factor , say γ.

• $100K + γ $100K + γ2 $100K + . . .
CONVERGES!
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Markov Systems with Rewards
• Finite set of n states - vector n - si

• Probabilistic state matrix, P - n× n - pij

• “Goal achievement” - Reward for each state,
vector n -ri

• Discount factor - γ

• Process:

– Start at state si
– Receive immediate reward ri
– Move randomly to a new state according to the

probability transition matrix
– Future rewards (of next state) are discounted by γ
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Solving a Markov Systems with
Rewards

• V ∗(si)− expected discounted sum of future rewards
starting in state si
•

V ∗(si) = ri + γ[pi1V ∗(s1) + pi2V
∗(s2) + . . . pinV

∗(sn)]
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Value Iteration to Solve a Markov
Systems with Rewards

• V 1(si)− expected discounted sum of future rewards
starting in state si for one step.

• V 2(si)− expected discounted sum of future rewards
starting in state si for two steps.

• ...

• V k(si)− expected discounted sum of future rewards
starting in state si for k steps.

• As k →∞V k(si)→ V ∗(si)

• Stop when difference of k + 1 and k values is smaller
than some ε.

Veloso, Carnegie Mellon
15-889 – Fall 2001



Markov Decision Processes
• Finite set of states, s1, . . . , sn

• Finite set of actions, a1, . . . , am

• Probabilistic state,action transitions:

pkij = prob (next = sj | current = si and take action ak)

• Reward for each state, r1, . . . , rn

• Process:

– Start in state si
– Receive immediate reward ri
– Choose action ak ∈ A
– Change to state sj with probability pkij.
– Discount future rewards
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Deterministic Example
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(Reward on unlabelled transitions is zero.)
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Nondeterministic Example
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Solving an MDP
• A policy is a mapping from states to actions.

• Optimal policy - for every state, there is no other
action that gets a higher sum of discounted future
rewards.

• For every MDP there exists an optimal policy.

• Solving an MDP is finding an optimal policy.

• A specific policy converts an MDP into a plain
Markov system with rewards.
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Policy Iteration
• Start with some policy π0(si).

• Such policy transforms the MDP into a plain Markov
system with rewards.

• Compute the values of the states according to
current policy.

• Update policy:

π1(si) = argmaxa{ri + γ
∑
j

paijV
π0(sj)}

• Keep computing

• Stop when πk+1 = πk.
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Value Iteration
• V ∗(si) = expected discounted future rewards, if we

start from si and we follow the optimal policy.

• Compute V ∗ with value iteration:

– V k(si) = maximum possible future sum of rewards
starting from state si for k steps.

• Bellman’s Equation:

V n+1(si) = maxk{ri + γ

N∑
j=1

pkijV
n(sj)}

• Dynamic programming
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