Towards Learning in Probabilistic Action Selection: Markov Systems and Markov Decision Processes

Manuela Veloso

Carnegie Mellon University
Computer Science Department

Planning - Fall 2001

Remember the examples on the board.

Different Aspects of "Machine Learning"

Supervised learning

- Classification concept learning
- Learning from labeled data
- Function approximation

Unsupervised learning

- Data is not labeled
- Data needs to be grouped, clustered
- We need distance metric

Control and action model learning

- Learning to select actions efficiently
- Feedback: goal achievement, failure, reward
- Search control learning, reinforcement learning

Search Control Learning

- Improve search efficiency, plan quality
- Learn *heuristics*

Learning Opportunities in Planning

- Learning to improve planning efficiency
- Learning the domain model
- Learning to improve plan quality
- Learning a universal plan

Which action model,
which planning algorithm,
which heuristic control
is the most efficient for a given task?

Reinforcement Learning

- A variety of algorithms to address:
 - learning the model
 - converging to the optimal plan.

Discounted Rewards

- "Reward" today versus future (promised) reward
- \$100K + \$100K + \$100K + ...
- Future rewards not worth as much as current.
- Assume reality . . . : discount factor , say γ .
- $\$100K + \gamma \$100K + \gamma^2 \$100K + \dots$ CONVERGES!

Markov Systems with Rewards

- ullet Finite set of n states vector \mathbf{n} s_i
- ullet Probabilistic state matrix, P n imes n p_{ij}
- ullet "Goal achievement" Reward for each state, vector \mathbf{n} - r_i
- Discount factor γ
- Process:
 - Start at state s_i
 - Receive immediate reward r_i
 - Move randomly to a new state according to the probability transition matrix
 - Future rewards (of next state) are discounted by γ

Solving a Markov Systems with Rewards

• $V^*(s_i)-$ expected discounted sum of future rewards starting in state s_i

$$V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$$

Value Iteration to Solve a Markov Systems with Rewards

- $V^1(s_i)$ expected discounted sum of future rewards starting in state s_i for one step.
- $V^2(s_i)$ expected discounted sum of future rewards starting in state s_i for two steps.

• ...

- $V^k(s_i)$ expected discounted sum of future rewards starting in state s_i for k steps.
- ullet As $k o \infty V^k(s_i) o V^*(s_i)$
- Stop when difference of k+1 and k values is smaller than some ϵ .

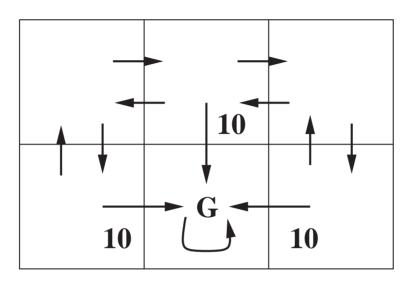
Markov Decision Processes

- Finite set of states, s_1, \ldots, s_n
- Finite set of actions, a_1, \ldots, a_m
- Probabilistic state, action transitions:

 $p_{ij}^k = \text{prob (next} = s_j \mid \text{current} = s_i \text{ and take action } a_k$)

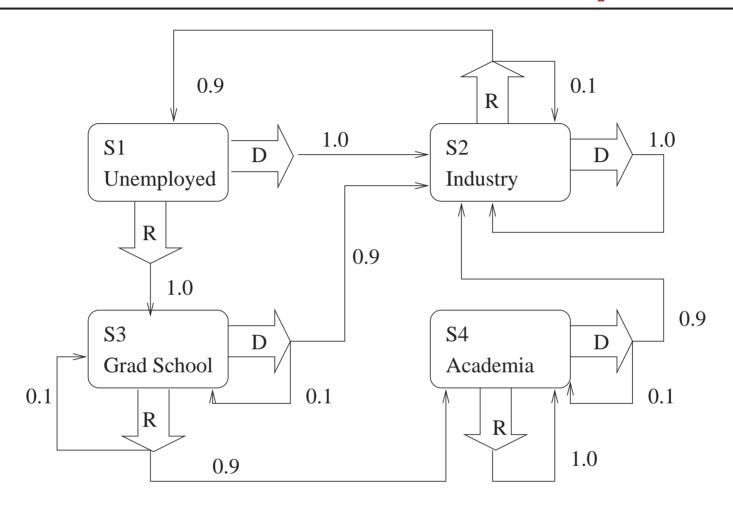
- Reward for each state, r_1, \ldots, r_n
- Process:
 - Start in state s_i
 - Receive immediate reward r_i
 - Choose action $a_k \in A$
 - Change to state s_j with probability p_{ij}^k .
 - Discount future rewards

Deterministic Example



(Reward on unlabelled transitions is zero.)

Nondeterministic Example



Solving an MDP

- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Policy Iteration

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to current policy.
- Update policy:

$$\pi_1(s_i) = \operatorname{argmax}_a\{r_i + \gamma \sum_j p_{ij}^a V^{\pi_0}(s_j)\}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Value Iteration

- $V^*(s_i) =$ expected discounted future rewards, if we start from s_i and we follow the optimal policy.
- Compute V^* with value iteration:
 - $V^k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_k \{r_i + \gamma \sum_{j=1}^N p_{ij}^k V^n(s_j)\}$$

Dynamic programming