
Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20011

Planning, Execution & Learning:Planning, Execution & Learning:
Hierarchical Task Net PlanningHierarchical Task Net Planning

Reid Simmons

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20012

Hierarchical Task Net (HTN) PlanningHierarchical Task Net (HTN) Planning
• Basic Ideas:

– Complex plans often have identifiable structure
– That structure can often be captured in the form of

hierarchies of abstract subplans
– Subplans are often (nearly) independent of one another
– Problem Reduction search, rather than state space search

“To get to conference in ?x, get to the airport, take a plane to ?x,
then get to the conference hotel”

“To get to the airport, either drive or take a cab”
“If you have enough money for the fare:

To take a cab to ?y, either call ahead, or flag a cab down, then
enter the cab, say “I want to go to ?y”, wait until at ?y, pay the
fare, then exit the cab”

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20013

AbstractionAbstraction
• Two Notions of Plan Abstraction

1. Abstract operator decomposes into partial subplan
2. Abstract operator is refined by adding details (less critical

preconditions and effects)

• We will focus mainly on #1
– #2 can be considered a special case of #1

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20014

Abstract PlansAbstract Plans
• Primitive Operators

– Standard STRIPS-style operators
– “Executable”

• Compound Operators
– Preconditions and Effects
– Methods for decomposing operator into more detailed subplans

• Details internal structure
• Similar to macros or subroutines

• An Abstract Plan contains compound operators

• A Fully Instantiated Plan has only primitive operators

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20015

MethodsMethods
• Methods (also called schema) are used for

decomposing operators
– Name and task variables
– Preconditions
– Effects

– Applicability conditions
– Expansion
– Temporal orderings
– Causal links

– Time windows
– Resource utilization

Part that describes
what operator does
(same as with
primitive operators)

Part that details
how the operator
is to be decomposed

Part that describes
quantitative aspects
of subplan

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20016

Simple Hierarchical Order Planner (SHOP) Simple Hierarchical Order Planner (SHOP)
(Nau, et.al. 1999)(Nau, et.al. 1999)

• Basic HTN Algorithm:
– Start with initial high-level task (not goals)
– Create task net by repeatedly expanding subplans until plan

is fully instantiated
– Select methods whose applicability conditions hold

• SHOP Algorithm:
– Forward search, linear planner

• Plans in same order as execution
• Essentially depth-first search

– Primitive operators have no preconditions
– No concurrent actions
– Highly expressive operator representation (numeric calculations)
– Efficient (but rather inflexible) planning algorithm

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20017

SHOP Domain ExampleSHOP Domain Example
(:operator (!putdown ?block)

((holding ?block))

((ontable ?block) (handempty)))

Delete list

Add list

(:method (make-clear ?y)

((clear ?y))

nil)

Applicability condition

Task list

(:method (make-clear ?y)

((on ?x ?y))

((make-clear ?x)
(!unstack ?x ?y) (!putdown ?x))

Applicability condition

Task list

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20018

Extensions to Simple HTN PlanningExtensions to Simple HTN Planning
1. Threat detection

– Deal with interacting goals
– Find ways of reusing operators

2. Methods can include preconditions and effects
– Find threats earlier in the planning process

3. Methods can indicate resource usage
– Do some types of scheduling

4. Operators/Methods can include open conditions
– Need to use action-based (refinement) planning
– Enables planner to find “novel” solutions

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 20019

Example: Home Construction (OExample: Home Construction (O--Plan)Plan)
Method Build (?house)

Precondition: (and (own land) (have money))
Effects: (built ?house)
Applicability: (single-family-home ?house)
Expansion: S1: Build-Foundation(?house)

S2: Build-Frame(?house)
S3: Build-Roof(?house)
S4: Build-Walls(?house)
S5: Build-Interior(?house)
S6: Decorate(?house)

Orderings: S1<S2, S2<S3, S2<S4, S3<S5, S5<S6
Links: S1 causes (foundations laid) for S2

S2 causes (frame erected) for S3 and S4
S3 causes (roof built) for S5
S4 causes (walls built) for S5
S5 causes (interior done) for S6

TimeWindow: start between 11:30 and 14:30 at S3
Resources: bricklayers = between 1 and 2 men at S4

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200110

Where is the Power?Where is the Power?
• Methods encode domain knowledge

• Methods encode problem solving knowledge

• Abstractions encapsulate patterns of interaction

Caveats
– HTN planning, in worst case, is still NP-complete
– May not terminate (recursive method expansions – may be

hard to detect infinite loops)
– May have to wait until completely expanded before finding

plan is illegal

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200111

Expressivity of HTN PlanningExpressivity of HTN Planning
• Theoretically, HTN Planning is More Expressive than

Action-Based Planning!!
– HTN planning can generate a larger class of plans
– Proof (by Erol) involves reduction to classes of grammars
– Action-based planning is analogous to

right-linear (regular) grammars
– HTN planning is analogous to context-free grammars

Example:

Want to create round-trip transportation plans such that the
leg of the trip from X to Y always uses the same carrier as
the leg of the trip from Y to X.

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200112

Dealing with Subplan InteractionsDealing with Subplan Interactions
• Types of Interactions

– Deleted condition (threat)
– Resource (e.g., “existing object” bindings)
– Redundant steps

• HTN Planners Often Use Critics to Detect Certain Types
of Illegal Plans and/or Synergies
– Time window bounds
– Resource bounds
– Interaction of effects between compound tasks
– Operators that can be merged

• In contrast, POP planners try to share operators
• Merging is more efficient, but may not be complete

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200113

Danger of OverDanger of Over--CommitmentCommitment

a0

a3

a2S1

q(x)

q(x) p(x) p(x)

~p(x) & ~q(x)

~q(x)

q(x)

a1.1 a1.2
q(x) r(x) r(x) p(x)

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200114

Properties of Abstract PlansProperties of Abstract Plans
• Abstract Plans can be Consistent and Complete

– Consistent: No inconsistent orderings or bindings
– Complete: Every precondition is achieved

• Downward Solution Property
– If an abstract plan is consistent and complete, then there is a

full instantiation of it that is also consistent and complete
– Implies that one can focus exclusively on that plan

• Upward Solution Property
– If an abstract plan is inconsistent, then no full instantiation

of that plan is consistent
– Implies that one can prune away inconsistent abstract plans

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200115

Properties of Abstract PlansProperties of Abstract Plans
• If Downward and/or Upward Solution Properties Hold,

HTN Planning is Very Efficient
– O(bsd) vs. O(bn)

• b: branching factor; s: average steps in method;
d: depth of expansion; n: length of plan

• Upward solution property holds if method has
unique main subaction
– There is one step of the decomposition to which all

preconditions and effects are attached

S1P1, P2 E1

a1
P1

a2 E1

P2

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200116

Metric ResourcesMetric Resources
• Consumable (no replenishment)

– Example: “available oil reserves”
– Representation: [rl, ru] ranges; Constraint propagation

• Renewable (complicated by substitution effects)
– Example: “money” “fuel”
– Representation: Algebraic; Constraint satisfaction

• Sharable – Single Unit
– Example: “a spacecraft’s camera”
– Representation: Mutex; Simple add/delete

• Sharable – Multiple Units
– Example: “drill presses in a factory”
– Representation: Need explicit scheduling techniques

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200117

Handling Metric TimeHandling Metric Time
• Time Can be Treated as a Metric Resource, but it is Special

– Non-exclusive resource (multiple actions can occur during
same time interval)

– Non-renewable resource (cannot create more time – sigh)
– Time resources must be consistent with temporal orderings

• Representations
– Precise time: map to reals or integers
– Time windows: [min, max]
– Algebraic: (t1 + t2 < duration)

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200118

Buy (?x, ?store)
Precond: Sells(?store, ?x)

At(?store)
Have(money)

Effect: Have(?x)
~Have(money)

Buy (?x, ?store)
Precond: Sells(?store, ?x)

At(?store)
Effect: Have(?x)

Abstraction PlanningAbstraction Planning
• Not the Same as HTN

– Although hierarchical, as is HTN, representation is
action operators, same as with action-based planning

– Search space is same as with action-based planning
– Hierarchy within single operator – achieved by removing

preconditions and effects to get “simpler” operator

Buy (?x, ?store)
Precond: Sells(?store, ?x)
Effect: Have(?x)

Planning, Execution & Learning: HTN Simmons, Veloso : Fall 200119

Abstraction PlanningAbstraction Planning
• Basic Idea: Save planning time by working first on parts

of plan that will not be affected by subsequent planning

• Abstraction Hierarchy Should Maintain the
Ordered Monotonicity Property (Knoblock)
– A literal that “interacts” with another literal is at the same, or

lower, abstraction level
– Literals that interact with one another are at the same level
– Abstraction level consists only of preconditions from that

level, or higher

