Planning, Execution & Learning:
Hierarchical Task Net Planning

Reld Simmons

Panning, Execution & Learning: HTN 1 Simmons, Veloso : Fal 2001

Hierarchical Task Net (HTN) Planning

 Basicldeas
— Complex plans often have identifiable structure

— That structure can often be captured in the form of
hierarchies of abstract subplans

— Subplans are often (nearly) independent of one another
— Problem Reduction search, rather than state space search
“To get to conferencein ?x, get to the airport, take a plane to ?x,
then get to the conference hotel”
“To get to the airport, either drive or take a cab”

“If you have enough money for the fare:
Totakea cabto ?y, either call ahead, or flag a cab down, then
enter the cab, say “| want to go to ?y”, wait until at ?y, pay the
fare, then exit the cab”

Panning, Execution & Learning: HTN 2 Simmons, Veloso : Fal 2001

Abstraction

« Two Notions of Plan Abstraction
1. Abstract operator decomposes into partial subplan

2. Abstract operator isrefined by adding details (less critical
preconditions and effects)

 Wewill focus mainly on #1
— #2 can be considered a special case of #1

Panning, Execution & Learning: HTN 3 Simmons, Veloso : Fal 2001

Abstract Plans

Primitive Operators
— Standard STRIPS-style operators
— “Executable”

Compound Operators
— Preconditions and Effects
for decomposing operator into more detailed subplans
e Detailsinternal structure
e Similar to macros or subroutines

An Abstract Plan contains compound operators

A Fully Instantiated Plan has only primitive operators

Panning, Execution & Learning: HTN 4 Simmons, Veloso : Fal 2001

Methods

« Methods (also called schema) are used for

decomposing operatgrs Part that describes
— Name and task variables

what operator does
— Preconditions <:D” (same as with
— Effects primitive operators)

— Applicability conditions Part that details

— Expansion | llhow the operator
— Temporal orderings is to be decomposed
— Causal links

Part that describes

— Timewindow e
Rescfurcedtj)tiliszati on <:DU quantitative aspects
) of subplan

Panning, Execution & Learning: HTN 5 Simmons, Veloso : Fal 2001

Simple Hierarchical Order Planner (SHOP)
(Nau, et.al. 1999)

e Basic HTN Algorithm:
— Start with initial high-level task (not goals)

— Createtask net by repeatedly expanding subplans until plan
Is fully instantiated

— Select methods whose applicability conditions hold

o SHOP Algorithm:
— Forward search, linear planner
e Plansin same order as execution
o Essentially depth-first search
— Primitive operators have no preconditions
— No concurrent actions
— Highly expressive operator representation (numeric calculations)
— Efficient (but rather inflexible) planning algorithm

Panning, Execution & Learning: HTN 6 Simmons, Veloso : Fal 2001

SHOP Domain Example

(:operator (!putdown ?block)

((holding ?block)) < Delete |ist
((ontable ?block) (handempty))) <@ A dd |ist

(:method (make-clear ?y)
((clear ?y)) _ Applicability condition

nil) T osk st

(:method (make-clear ?y)
((on ?x ?y)) <R Applicability condition
- ?
((make-clear 2x))_ Task list

('unstack ?x ?y) (putdown ?x)

Panning, Execution & Learning: HTN 7 Simmons, Veloso : Fal 2001

Extensionsto Simple HTN Planning

1. Threat detection
— Deadl with interacting goals
— Find ways of reusing operators

2. Methods can include preconditions and effects
— Find threats earlier in the planning process

3. Methods can indicate resource usage
— Do some types of scheduling

4. Operators/Methods can include open conditions

— Need to use action-based (refinement) planning
— Enables planner to find “novel” solutions

Panning, Execution & Learning: HTN 8 Simmons, Veloso : Fal 2001

Example: Home Construction (O-Plan)

Method Build (?house)

Precondition: (and (own land) (have money))
Effects: (built ?house)

Applicability:

Expansion: S1:
S2:
S3:
S4:
S5
S6:

(single-family-home ?house)
Build-Foundation(?house)
Build-Frame(?house)
Build-Roof(?house)
Build-Walls(?house)
Build-Interior(?house)
Decorate(?house)

Orderings: S1<S2, S2<S3, S2<54, S3<S5, S5<S6
Links: S1 causes (foundations laid) for S2

S2 causes (frame erected) for S3 and S4

S3 causes (roof built) for S5

S4 causes (walls built) for S5

S5 causes (interior done) for S6
TimeWindow: start between 11:30 and 14:30 at S3
Resources: bricklayers = between 1 and 2 men at S4

Panning, Execution & Learning: HTN 9

S mmons, Veoso : Fall 2001

Whereisthe Power?

* Methods encode domain knowledge
« Methods encode problem solving knowledge

« Abstractions encapsulate patterns of interaction

Caveats
— HTN planning, in worst case, is still NP-complete

— May not terminate (recursive method expansions — may be
hard to detect infinite loops)

— May have to wait until completely expanded before finding
planisillegal

Panning, Execution & Learning: HTN 10 Simmons, Veloso : Fal 2001

Expressivity of HTN Planning

Theoretically, HTN Planning is More Expressive than
Action-Based Planning!!

— HTN planning can generate alarger class of plans

— Proof (by Eral) involves reduction to classes of grammars

— Action-based planning is analogous to
right-linear (regular) grammars

— HTN planning is analogous to context-free grammars

Example:

Want to create round-trip transportation plans such that the
leg of thetrip from X to Y always uses the same carrier as
the leg of thetripfromY to X.

Panning, Execution & Learning: HTN 11 Simmons, Veloso : Fal 2001

Dealing with Subplan | nteractions

o Typesof Interactions
— Deleted condition (threat)
— Resource (e.g., “existing object” bindings)
— Redundant steps

 HTN Planners Often Use Criticsto Detect Certain Types
of Illegal Plans and/or Synergies

— Time window bounds
— Resource bounds
— Interaction of effects between compound tasks
— Operators that can be merged
e |n contrast, POP plannerstry to share operators
e Merging is more efficient, but may not be complete

Panning, Execution & Learning: HTN 12 Simmons, Veloso : Fal 2001

Danger of Over-Commitment

q(x) pP(X) px) ~q(x)
> » a2
q(x)
20 al.l —» al.?
q(x) rx) r(x P(X)

qx) ~p(x) & ~q(x)
» a3

Panning, Execution & Learning: HTN 13 Simmons, Veloso : Fal 2001

Properties of Abstract Plans

e Abstract Plans can be Consistent and
— Consistent: No inconsistent orderings or bindings
. Every precondition is achieved

* Downward Solution Property

— If an abstract plan is consistent and complete, then thereisa
full instantiation of it that is also consistent and complete

— Implies that one can focus exclusively on that plan

* Upward Solution Property

— If an abstract plan is inconsistent, then no full instantiation
of that plan is consistent

— Implies that one can prune away inconsistent abstract plans

Panning, Execution & Learning: HTN 14 Simmons, Veloso : Fal 2001

Properties of Abstract Plans

 |If Downward and/or Upward Solution Properties Hold,
HTN Planning is Very Efficient

— O(bs”) vs. O(b")
e b: branching factor; s. average steps in method,;
d: depth of expansion; n: length of plan

o Upward solution property holds if method has

— Thereis one step of the decomposition to which all
preconditions and effects are attached

P1, P2 El

P
l\al azi
P2—__

Panning, Execution & Learning: HTN 15 Simmons, Veloso : Fal 2001

Metric Resources

Consumabl e (no replenishment)

— Example: “available oil reserves’

— Representation: [r,, r | ranges; Constraint propagation
Renewable (complicated by substitution effects)

— Example: “money” “fuel”

— Representation: Algebraic;, Constraint satisfaction

Sharable — Single Unit
— Example: “a spacecraft’s camera”
— Representation: VI utex; Simple add/del ete

Sharable — Multiple Units
— Example: “drill pressesin a factory”
— Representation: Need explicit scheduling techniques

Panning, Execution & Learning: HTN 16 Simmons, Veloso : Fal 2001

Handling Metric Time

 Time Can be Treated as a Metric Resource, but it is Special

— Non-exclusive resource (multiple actions can occur during
same time interval)

— Non-renewable resource (cannot create more time —sigh)
— Time resources must be consistent with temporal orderings

* Representations
— Precisetime: map to realsor integers
— Time windows:
— Algebraic: (t1 +t2 < duration)

Panning, Execution & Learning: HTN 17 Simmons, Veloso : Fal 2001

Abstraction Planning

e Notthe SameasHTN

— Although hierarchical, asisHTN, representation is
action operators, same as with action-based planning

— Search space is same as with action-based planning
— Hierarchy within single operator — achieved by removing
preconditions and effects to get “simpler” operator

Buy (?x, ?store)

Precond: Sells(?store, ?X)

Effect: Have(?x)

,

Buy (?x, ?store)
Precond: Sells(?store, ?x)
At(?store)

Effect: Have(?x)

Panning, Execution & Learning: HTN 18

Buy (?x, ?store)

Precond: Sells(?store, ?x)
At(?store)
Have(money)

Effect: Have(?x)

~Have(money)

S mmons, Veoso : Fall 2001

Abstraction Planning

« Basic |dea: Save planning time by working first on parts
of plan that will not be affected by subsequent planning

o Abstraction Hierarchy Should Maintain the
Ordered Monotonicity Property (Knoblock)
— A literal that “interacts’ with another literal is at the same, or
lower, abstraction level
— Literals that interact with one another are at the same level

— Abstraction level consists only of preconditions from that
level, or higher

Panning, Execution & Learning: HTN 19 Simmons, Veloso : Fal 2001

