Planning, Execution & Learning 1. Conditional Planning

Reid Simmons

Conditional Planning

- Create Branching Plans
 - Take *observations* into account when selecting actions

- Observations Used to Handle Uncertainty
 - Uncertainty arises from non-deterministic actions
 - Uncertainty arises from lack of knowledge
- Planners Differ With Respect To:
 - Representation of uncertainty (logic, probabilities)
 - Representation of plans (trees, graphs)
 - Representation of observations
 - Search control

CNLP (Peot & Smith, 1992)

- Extensions to SNLP to Create Conditional Plans with Observations
- Extensions to SNLP Representation
 - Three-valued logic (True, False, Unknown)
 - Observations actions

```
Observe_Road (?loc1 ?loc2)
Pre: Unknown (Clear(?loc1, ?loc2))
+\alpha_1: Clear(?loc1, ?loc2)
+\alpha_2: ~Clear(?loc1, ?loc2)
```

- Contexts
 - Compatible observation labels

CNLP Extensions to SNLP

- "Conditioning"
 - Can remove threat by separating contexts
 (i.e., making them incompatible)
- Propagation of *context labels* and *reasons*
 - Contexts: What actions are incompatible
 - Reasons: what goals an action supports
- Tree-structured plan
 - Goal replication

Adding Conditional Operators

Conditionally Planning a Ski Trip

CNLP Summary

- Can Create Conditional Plans with Observation Actions
 - However, no explicit distinction between observations and causal effects
- Can Handle *Disjunctive Uncertainty*
 - No notion of which conditions more likely
 - Increases search space tremendously
- Can Plan with *Failure* as an Option

Buridan (Kushmerick, 1995)

- Plan to Achieve Goals with Probability Greater Than a Given Threshold
- Extensions to SNLP Representation
 - Probabilistic (not-deterministic) outcomes of actions
 - Conditioned on current state
 - Mutually exclusive and exhaustive "triggers"
 - No preconditions (!)
 - Action can occur anywhere

Buridan Extensions to SNLP

- Multiple Causal Links
 - Each link increases probability of achievement

• Confrontation

- Reduce likelihood of threat by action A₁ by adding another action A₂ that makes it less likely for A₁ to have the undesired effect
- Plan Assessment
 - Estimate probability of plan success
 - NP-hard, in general

9

Buridan (Partial) Plan

Increasing Probability of Success

Confronting a Threat

Assessing the Plan

```
Goal: pr(Holding & Clean & Painted) > 0.85
Initial:
            {(Dry, ~Holding, Clean, Painted), 0.7)
             (~Dry, ~Holding, Clean, Painted), 0.3)}
Paint:
            {(Dry, ~Holding, Clean, Painted), 0.63)
             (Dry, ~Holding, ~Clean, Painted), 0.07)
             (~Dry, ~Holding, Clean, Painted), 0.27)
             (~Dry, ~Holding, ~Clean, Painted), 0.03)}
Dry-It:
            {(Dry, ~Holding, Clean, Painted), 0.63)
                                                               {(Dry, ~Holding, Clean, Painted), 0.846)
             (Dry, ~Holding, ~Clean, Painted), 0.07)
                                                                (Dry, ~Holding, ~Clean, Painted), 0.094)
             (Dry, ~Holding, Clean, Painted), 0.216)
                                                                (~Dry, ~Holding, Clean, Painted), 0.054)
             (~Dry, ~Holding, Clean, Painted), 0.054)
                                                                (~Dry, ~Holding, ~Clean, Painted), 0.006)}
             (Dry, ~Holding, ~Clean, Painted), 0.024)
             (~Dry, ~Holding, ~Clean, Painted), 0.006)}
Pickup:
            {(Dry, Holding, Clean, Painted), 0.8037)
             (Dry, ~Holding, Clean, Painted), 0.0423)
             (Dry, Holding, ~Clean, Painted), 0.0893)
             (Dry, ~Holding, ~Clean, Painted), 0.0047)
             (~Dry, Holding, Clean, Painted), 0.0513)
             (~Dry, ~Holding, Clean, Painted), 0.0027)
             (~Dry, Holding, ~Clean, Painted), 0.0057)
             (~Dry, ~Holding, ~Clean, Painted), 0.0003)}
```

Buridan Summary

- Handles Probabilistic Actions
 - Outcomes conditioned on current state and random chance
- Different Notion of Plan Success
 - Probability of achieving goal greater than threshold
 - Adds multiple actions to increase probability
- No Observational Actions
 - Not a conditional planner

C-Buridan (Draper, 1994)

- Conditional, Partial-Order Planner
- Extensions to Buridan
 - Representation: Observation labels on actions
 - Clear distinction between effects and observations
 - Models noisy sensors
 - Algorithm: *Conditioning* (*branching*) to remove threats
 - Add observation actions to separate contexts
 - Propagate context labels

Differences from CNLP

- Branches can Rejoin
 - Plans are DAG's
- Branch Added Only to Remove Threat
 - Not really "planning to observe"
- No a priori Relationship Between Observation Labels and Propositions
 - Planner must "discover" correlations

Conditionally Processing Widgets (I)

Conditionally Processing Widgets (II)

Conditionally Processing Widgets (III)

