Planning, Execution & Learning
1. Conditional Planning

Reid Simmons
Conditional Planning

- Create Branching Plans
 - Take *observations* into account when selecting actions

- Observations Used to Handle Uncertainty
 - Uncertainty arises from non-deterministic actions
 - Uncertainty arises from lack of knowledge

- Planners Differ With Respect To:
 - Representation of uncertainty (logic, probabilities)
 - Representation of plans (trees, graphs)
 - Representation of observations
 - Search control
CNLP (Peot & Smith, 1992)

- Extensions to SNLP to Create Conditional Plans with Observations

- Extensions to SNLP Representation
 - Three-valued logic (True, False, Unknown)
 - Observations actions
 - `Observe_Road (?loc1 ?loc2)`
 - Pre: Unknown (Clear(?loc1, ?loc2))
 - $+\alpha_1$: Clear(?loc1, ?loc2)
 - $+\alpha_2$: ~Clear(?loc1, ?loc2)
 - Contexts
 - Compatible observation labels
CNLP Extensions to SNLP

- “Conditioning”
 - Can remove threat by *separating contexts*
 (i.e., making them incompatible)

- Propagation of *context labels* and *reasons*
 - **Contexts**: What actions are incompatible
 - **Reasons**: what goals an action supports

- Tree-structured plan
 - Goal replication
Adding Conditional Operators

Start

Q, Unknown(P)

Q & Unknown(P)

Obs1

P α₁ α₂ ~P

P

A1

G r: Finish, Finish₂ c: {} c: {α₁}

G Finish c: {α₁}

~P

A2

G r: Finish₂ c: {α₂}

G Finish₂ c: {α₂}
Conditionally Planning a Ski Trip

Start
(at skis home), (at home), Unknown(Clear(b, s)), Unknown(Clear(c, p)),
Clear(home, b), Clear(b, c)

Get(skis) Go(home, b)

Observe_road(b, s)
Clear(b, s) ~Clear(b, s)

At(b)

Go(b, s)

Clear(b, s)

Go(c, p)

Observe_road(c, p)
Clear(c, p)

Fail

Finish
(c: {α₁})

Finish₂
(c: {α₂, β₁})

Start
(at skis home), (at home), Unknown(Clear(b, s)), Unknown(Clear(c, p)),
Clear(home, b), Clear(b, c)

Get(skis) Go(home, b)

Observe_road(b, s)
Clear(b, s) ~Clear(b, s)

Go(b, s)

Clear(b, s)

Go(c, p)

Observe_road(c, p)
Clear(c, p)

Fail

Finish
(c: {α₁})

Finish₂
(c: {α₂, β₁})
CNLP Summary

- Can Create Conditional Plans with Observation Actions
 - However, no explicit distinction between observations and causal effects

- Can Handle *Disjunctive Uncertainty*
 - No notion of which conditions more likely
 - Increases search space tremendously

- Can Plan with *Failure* as an Option
Buridan (Kushmerick, 1995)

- Plan to Achieve Goals with Probability Greater Than a Given Threshold

- Extensions to SNLP Representation
 - Probabilistic (not-deterministic) outcomes of actions
 - Conditioned on current state
 - Mutually exclusive and exhaustive “triggers”
 - No preconditions (!)
 - Action can occur anywhere

```
Pickup

Dry
  0.95 Holding
  0.05

~Dry
  0.5 Holding
  0.5
```
Buridan Extensions to SNLP

• Multiple Causal Links
 – Each link increases probability of achievement

• Confrontation
 – Reduce likelihood of threat by action A_1 by adding another action A_2 that makes it less likely for A_1 to have the undesired effect

• Plan Assessment
 – Estimate probability of plan success
 – NP-hard, in general
Buridan (Partial) Plan

Start

- Holding, Dry, Clean, ~Painted
 p=0.7

- Holding, ~Dry, Clean, ~Painted
 p=0.3

- Holding
 - Dry
 - Pickup
 - Holding
 - Paint
 - Holding
 - Painted
 - Holding
 - ~Clean
 - Holding
 - Painted
 - Holding
 - ~Clean
 - Holding & Clean & Painted
 Finish p > 0.85

Planning, Execution & Learning: Conditional
Simmons, Veloso: Fall 2001
Increasing Probability of Success

~Holding, Dry, Clean, ~Painted

Dry

~Dry

1.0 0.8 0.2

Dry
~Dry

Pickup

Dry

~Dry

0.95 0.05 0.5 0.5

Holding

Dry

~Dry

1.0 0.8 0.2

Paint

Holding
~Holding

Painted
~Painted

Holding & Clean & Painted

Finish p > 0.85
Confronting a Threat

Start

~Holding, Dry, Clean, ~Painted

p = 0.7

~Holding, ~Dry, Clean, ~Painted

p = 0.3

Pickup

Dry

0.95

0.05

~Dry

0.5

0.5

Holding

Holding

0.9

0.1

Paint

Painted

~Clean

Holding

Holding

Painted

~Clean

Holding & Clean & Painted

Finish p > 0.85
Assessing the Plan

Initial:
{(Dry, ∼Holding, Clean, Painted), 0.7)
(∼Dry, ∼Holding, Clean, Painted), 0.3}

Goal: pr(Holding & Clean & Painted) > 0.85

Paint:
{(Dry, ∼Holding, Clean, Painted), 0.63)
(Dry, ∼Holding, ∼Clean, Painted), 0.07)
(∼Dry, ∼Holding, Clean, Painted), 0.27)
(∼Dry, ∼Holding, ∼Clean, Painted), 0.03}

Dry-It:
{(Dry, ∼Holding, Clean, Painted), 0.63)
(Dry, ∼Holding, ∼Clean, Painted), 0.07)
(Dry, ∼Holding, Clean, Painted), 0.216)
(∼Dry, ∼Holding, Clean, Painted), 0.054)
(Dry, ∼Holding, ∼Clean, Painted), 0.024)
(∼Dry, ∼Holding, ∼Clean, Painted), 0.006)

Pickup:
{(Dry, Holding, Clean, Painted), 0.8037)
(Dry, ∼Holding, Clean, Painted), 0.0423)
(Dry, Holding, ∼Clean, Painted), 0.0893)
(Dry, ∼Holding, ∼Clean, Painted), 0.0047)
(∼Dry, Holding, Clean, Painted), 0.0513)
(∼Dry, ∼Holding, Clean, Painted), 0.0027)
(∼Dry, Holding, ∼Clean, Painted), 0.0057)
(∼Dry, ∼Holding, ∼Clean, Painted), 0.0003)}
Buridan Summary

• Handles Probabilistic Actions
 – Outcomes conditioned on current state and random chance

• Different Notion of Plan Success
 – Probability of achieving goal greater than threshold
 – Adds multiple actions to increase probability

• No Observational Actions
 – *Not a conditional planner*
C-Buridan (Draper, 1994)

- Conditional, Partial-Order Planner

- Extensions to Buridan
 - Representation: Observation labels on actions
 - Clear distinction between effects and observations
 - Models noisy sensors
 - Algorithm: *Conditioning (branching)* to remove threats
 - Add observation actions to separate contexts
 - Propagate context labels

Differences from CNLP

- Branches can Rejoin
 - Plans are DAG’s

- Branch Added Only to Remove Threat
 - Not really “planning to observe”

- No a priori Relationship Between Observation Labels and Propositions
 - Planner must “discover” correlations
Conditionally Processing Widgets (I)

- Start
 - Flawed, Blemished, ~Processed, ~Painted (p=0.3)
 - ~Flawed, ~Blemished, ~Processed, ~Painted (p=0.7)

- Paint
 - Painted
 - ~Blemished
 - Ship
 - Processed
 - ~Processed, ~Flawed
 - Processed
 - Processed & Painted
 - Finish p > 0.85
Conditionally Processing Widgets (II)

- Start
 - \(p = 0.7 \)
 - \(\neg \text{Flawed}, \neg \text{Blemished}, \neg \text{Processed}, \neg \text{Painted} \)
 - \(\text{Flawed}, \neg \text{Blemished}, \neg \text{Processed}, \neg \text{Painted} \)

- Paint
 - \(p = 0.3 \)
 - Processed
 - \(1.0 \)
 - \(0.9 \)
 - \(0.1 \)
 - Painted
 - \(\neg \text{Blemished} \)

- Ship
 - Processed
 - \(\neg \text{Processed}, \neg \text{Flawed} \)
 - Processed
 - \(\neg \text{Processed}, \neg \text{Flawed} \)

- Reject
 - Processed
 - \(\neg \text{Processed}, \neg \text{Flawed} \)
 - Processed
 - \(\neg \text{Processed}, \neg \text{Flawed} \)

- Processed & Painted
 - Finish \(p > 0.85 \)
Conditionally Processing Widgets (III)

- Flawed, ~Blemished, ~Processed, ~Painted
- Flawed, Blemished, ~Processed, ~Painted

Start

p=0.7

~Flawed, ~Blemished, ~Processed, ~Painted

Paint

~Processed

1.0

0.9

0.1

Painted

~Blemished

Inspect

~Blemished

1.0

0.9

Blemished

α₁

α₂

Reject

~Processed, c: {α₁}

~Processed, Flawed

c: {α₁}

Processed

~Processed, Flawed

~Processed

~Flawed

Processed

~Processed

Flawed

~Flawed

Processed & Painted

Finish p > 0.85

c: {α₁, α₂}

Ship

Processed

~Processed

Flawed

~Flawed

Processed

~Processed

~Flawed

Processed