Graph-based Trajectory Planning through
Programming by Demonstration

Nik A. Melchior and Reid Simmons!

Abstract— As robots are utilized in a growing number of
applications, the ability to teach them to perform tasks safely
and accurately becomes ever more critical. Programming by
demonstration offers an expressive means for teaching while
being accessible to domain experts who may be novices in
robotics. This work investigates a programming by demon-
stration approach to learning motion trajectories for robotic
manipulator tasks. Using a graph constructed to determine
correspondences between multiple imperfect demonstrations,
the robot learner plans novel trajectories that safely and
smoothly generalize the teacher’s behavior, while attenuating
those imperfections. The learner also actively detects instances
of diverging strategy between examples, requesting advice for
resolving these ambiguities. We demonstrate our approach in
example domains with a 7 degree-of-freedom manipulator.

I. INTRODUCTION

Robots are becoming more common in many domains:
They are used as tools for manufacturing, instruments for
surgery, and toys for consumers. As their areas of application
expand, it becomes increasingly critical to reliably transfer
task knowledge to the robot. While domain experts often can
be found who understand the task, they may know nothing
about programming robots. Programming by demonstration
(PbD) is an approach that facilitates knowledge transfer from
a domain expert to an autonomous system. It provides an
intuitive approach for someone skilled in performing a task to
teach a robot to perform that task without having to learn to
program the robot. Conversely, it does not require a robotics
expert to become skilled in the task.

A primary difficulty in PbD approaches to robotic ma-
nipulation is representing and understanding the constraints
imposed by the physical world. Geometric constraints, in-
cluding the locations of physical obstacles, are the most
obvious issues, since detecting the locations of objects can
be difficult for current sensor technologies. Vision or LIDAR
sensors must be located to observe the entire environment,
without suffering from occlusion due to the objects or the
robot itself. Alternately, the robot may be provided with an a
priori model of the objects of interest, but constructing this
model may require the skills of a robotics specialist.

Even if a model could be constructed to provide the robot
with knowledge of obstacles, non-geometric task constraints
must also be considered. For example, a robot carrying
a cup of liquid must maintain its end-effector orientation
to avoid spilling. Similarly, a robot routing cable around
complex objects may need to follow a particular path to avoid
snagging the cable. While a detailed physical simulation may

1Robotics Institute of Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, USA; {nmelchio, reids}@cs.cmu.edu

be able to detect violations of such constraints, it would be
challenging for a novice robot user to communicate them
to a planner. However, if a user is able to demonstrate
successful strategies for completing the task, he does not
need to articulate the criteria that he is optimizing in a
manner comprehensible to the robot.

Thus, PbD enables domain experts to teach robots about
geometric and non-geometric task constraints without explic-
itly formalizing those constraints. The robot then create novel
plans respecting the constraints, generalizing the actions
performed by the teacher. In this work, we present a method
for planning novel motion trajectories for robot manipulators
based on demonstrations. Our approach learns to perform
fixed, repetitive tasks in the presence of static obstacles,
with minor variations due to uncertainty in both initial
conditions and the ability to follow a trajectory precisely.
In particular, we do not assume that example demonstrations
are flawless, but rather that they contain jitter, non-optimal
movements, and inconsistencies between examples. The
robot must therefore discern the essential motions common
to multiple examples and incorporate them in novel plans.
In addition, we assume that the examples may differ in
essential characteristics, making it difficult for the robot to
combine the trajectories into a single, learned strategy. In
such cases, the robot must refine its knowledge by actively
requesting additional information from the teacher, in order
to differentiate the manipulation strategies.

Our approach relies on a neighbor graph over the demon-
strations, a representation that relates discretely sampled
points from example trajectories. Our previous work [1],
summarized in Section III, details a method to build such
a data structure. The planning algorithm contributed in the
present work uses this neighbor graph to create new plans
that are guaranteed to be safe (avoiding obstacles) as long
as the demonstration trajectories are also safe. Each point
in a new plan is constructed using a set of neighbors from
the demonstration set, refined to reduce jitter and minor
inconsistencies, while maintaining the essential (common)
characteristics of the demonstration trajectories. The plan-
ning algorithm also detects demonstrations that cluster into
qualitatively distinct trajectories (for instance, circumventing
an obstacle by two entirely different routes). In such cases,
the robot requests additional advice from the operator to
determine which strategy should be preferred. Experimen-
tal results in Section V demonstrate our approach in two
different domains: The robot learner is able to safely trace
a smooth path through a maze (with a single solution) and
across a planar surface with multiple obstacles and multiple

demonstrated routes between them. We also present results
from a user study that indicates how well novices can use
our approach to train the robot.

II. RELATED WORK

Approaches to programming by demonstration differ
widely in their use of prior knowledge and the models used
to create new plans. Simplified motion or world models [2],
[3], [4] and even traditional motion planning [5] can be used
to plan between demonstrated states if an environment model
is available. Use of the model may alternately be limited to
collision testing plans created by other methods [6], [7].

Many approaches collect similar actions into libraries,
which can be applied to create motion plans for new tasks
or situations. [8], [9]. Others attempt to learn dynamical
models of the system using GMMs [10], Neural Networks
[11], or other statistical feedback techniques [12]. These
models may then be used to create new plans. Feature-
based policy-learning approaches such as that of Argall [13],
Chernova [14], and Ratliff [15] also create results that are
applicable to new tasks and domains.

Our approach is most similar in spirit to data-driven
approaches such as the interpolation-based methods of
Ude [16], Lee [17] and Aleotti [6] or flow-field techniques
developed by Mayer [18] and Drumwright [19]. These
approaches, like ours, focus on learning entire tasks (or
portions of tasks) at a time, rather than computing an action
based solely on local features. Among similar approaches,
only Delson’s work [20], though, explicitly considers safety
during the generation of novel trajectories. This approach
is most completely developed in two dimensions, but an
extension to three dimensions is presented in [21].

Dimensionality reduction approaches attempt to discover
a lower dimensional representation of the demonstrated mo-
tions that retains the crucial features of the examples. While
some such approaches use techniques, such as PCA, that
retain as much variance as possible [22], others attempt
to directly estimate correspondences between portions of
example trajectories [23]. Rather than optimize for variance
across the entire dataset, this alternative, which builds upon
Isomap [24], optimizes for distances between points in the
dataset. This approach requires a neighbor graph connecting
points that are considered qualitatively similar. Distances
between neighboring points are calculated directly using the
metric of choice (e.g. Euclidean), but all other pairwise
distances are calculated as the sum of shortest-path link dis-
tances through the neighbor graph. These geodesic distances
indicate the nearness of points in terms of task execution, and
provide a basis for determining which points can reasonably
be clustered and interpolated.

III. BACKGROUND

Our previously reported work [1] developed a neighbor-
finding technique that used a set of heuristics to produce a
neighbor graph suitable for reduced-dimensionality planning.
Planning in a low-dimensional latent space is attractive
because the arrangement of trajectory points in this space

(b) Slalom trajectories in the latent space.

Fig. 1. Slalom trajectories.

is expected to correlate with the semantics of the task.
For example, the trajectories of Figure 1(a) cross over
themselves in work space, but are “unrolled” in the latent
space (Figure 1(b)). The start and goal points, previously
close to one another, are now at opposite ends of the
horizontal axis. Thus, this dimension represents progress
through the task, while the vertical dimension separates
distinct demonstrations. Planning through this space would
seem to be intuitive since movement in each direction has a
semantic explanation.

Unfortunately, we have found that this and similar ap-
proaches to dimensionality reduction do not lead to robust
planning. For one, distances in the neighbor graph are par-
ticularly susceptible to spurious neighbor links. While these
algorithms are robust to a large number of false negatives
(missing neighbor links), even a single false positive link
can have disastrous effects on the embedding [25]. This
is because spurious neighbor links create “short circuit”
connections between unrelated portions of trajectories, thus
lowering the geodesic distances between points in seman-
tically distant regions. This forces the embedding to retain
the proximity of these regions in the low-dimensional latent
space, introducing false semantic relevance between points.

While our neighbor-finding approach mostly avoids the
problem of spurious neighbor links [1], another fundamental
problem is that lifting novel trajectories from the latent space
back to the work (Euclidean or configuration) space often
produces second-order discontinuities. Lifting is typically
performed by projecting discrete points sampled from the
trajectory in the latent space into the work space. Individual
query points are lifted by considering nearby sample points
whose corresponding high-dimensional points are known.
The high-dimensional point corresponding to the query is
calculated by interpolating between the high-dimensional
neighbor points, weighted by their distance from the query
in the low-dimensional space. Unfortunately, non-linear em-

Fig. 2. The WAM manipulator traversing a wire maze. The fiducial in the
lower-left is used to detect the location of the rig relative to the robot.

beddings, such as Isomap [24], do not guarantee smoothness
of lifted trajectories, even when points are densely sampled
from a smooth latent-space trajectory. Moreover, because
dimensionality reduction is not injective (multiple regions
of the work space can map to the same regions of the latent
space), there may be ambiguities in lifting points back to
the work space. These problems are actually exacerbated as
additional example trajectories are provided to the learner.
More examples produce a more cluttered latent space with
more interconnections between neighbor points. This creates
additional opportunities for discontinuities in lifted trajec-
tories. Clearly, decreasing performance with an increasing
amount of information is not a desired attribute of a planner.
These problems are clearly illustrated in our wire maze
domain (Figure 2). Here, participants were asked to guide
a 7-DOF Barrett WAM arm through a wire maze, with
the arm in passive gravity-compensation mode. Figure 3
displays workspace traces of six demonstration trajectories
(in purple) beginning at the green points near the bottom
of the image and ending at the red points. The latent
space embedding created by our algorithm is shown on
the right. As expected, this embedding essentially “unrolls”
the trajectories, stretching them out so that task time, or
progression through the maze, maps from left to right on
the horizontal axis. The vertical axis provides a dimension
for variation between examples. The blue line represents a
candidate plan, created as a series of line segments stretching
from the start to the goal in the latent space. Discontinuities
result, however, when this plan is lifted back to the original
workspace in the left image. Although a post-processing step
could be applied to smooth the planned trajectory, it is not
clear whether a smoothed version would follow the nuances
of the demonstration trajectories, or even maintain safety.

IV. APPROACH

The approach described in this paper addresses these
issues by planning directly in the work space. We still use
the neighbor graph to determine correspondences between

trajectory points, but rather than planning in the latent
space, interpolation and distance calculations are performed
in the original (higher-dimensional) work space. Our planner
interpolates between the multiple demonstration trajectories,
eliding inconsistencies (errors and suboptimal motions) while
maintaining the essential geometric characteristics of the
demonstrations.

As the first step in neighbor finding, we uniformly sample
each trajectory at fixed distances in the work space. The
sampling is done to compensate for temporal differences
in the demonstrations (this assumes that dynamics are not
fundamental to task achievement). Then, heuristics (de-
scribed in detail in [1]) are used to find correspondences
between neighboring points. The heuristics attempt to find
local coherence between trajectories; for instance, encoding
the idea that corresponding points are more likely to have
nearby predecessors that also correspond. The result is a
graph where connections between trajectories (usually) in-
dicate semantically meaningful matches, while points that
remain unmatched typically result from imperfections in the
demonstrations, such as jitter or small detours.

The planning algorithm proceeds iteratively by calculating
an action to take based on a set of neighbor points and
then choosing a new set of neighbor points based on that
action, until a goal state is reached. The initial set of neighbor
points is chosen simply as those nearest the start state of the
robot. The action is computed as a locally weighted average
of the actions associated with each point in the neighbor
set (Fig. 4(b)). Since the points in the neighbor graph are
sampled from the demonstration trajectories, the actions
recorded during demonstration do not necessarily correspond
exactly to those points. Instead, actions are computed as the
vector from the current neighbor point to its subsequent point
in the same trajectory. As a matter of notation, we represent
an example trajectory point as t; and its successor as t;".
Thus, given N neighbors of a plan point p, their weights
wy,, normalization factor W, and the subsequent plan point
pT are calculated as:

Wn = |tn 7p|
N

W = an
n=0

N
+ = Yn o _
P —p+7;)w(tn tn)

The next step is to select a new set of neighbors. These are
not merely the closest points to p*, but must also represent
portions of the demonstration trajectories at semantically
equivalent states during execution of the task. Since distinct
portions of the trajectories may appear in close proximity
in non-Markovian regions (c.f. Figure 1) we need to rely
on points that are close geodesically in the neighbor graph.
However, because the demonstration trajectories may have
small imperfections, rather than simply advancing to the set
of points subsequent to the previous neighbors, we search

Fig. 3. Traces of the end-effector position while traversing the wire maze, shown in the workspace (left) and in the learned reduced dimensionality space
(right). The light blue trace is a naive plan created in the reduced dimensionality space, then lifted to the original workspace.

near p*, removing neighbors that are too far away and
adding new neighbors that are nearby in both metric and
graph distance (Fig. 4(c)). In our experiments, we found
that searching for points within d,, (the trajectory sampling
distance) of pT and three graph links from the previous
neighbor set gave good results.

Finally, we refine our choice of p™. While the action
computed from the neighbor set faithfully reproduces the
actions demonstrated by the teacher at that point in the
task, undesired actions are represented as well. We thus
adjust p* toward a position that is both representative of
the average action performed by the teacher and close to the
new neighbor set. To do this, we place a Gaussian over each
new neighbor and use gradient ascent to refine the position of
pt. Figure 4(d) illustrates level sets of this reward function
around the new neighbors. The new plan point is refined to
lie at a local peak of this function.

This approach to planning ensures that interpolation occurs
only between demonstrated points that are similar in pose and
graph distance: precisely where interpolation is expected to
safely respect both geometric and non-geometric constraints.
In addition, we use a volumetric model of the robot to ensure
safe operation. A CAD model of the robot is used to calculate
the volume of space that the robot occupies as it moves
through the demonstration trajectories. These swaths of space
are known to be free of physical obstacles. Then, during
planning, we check whether the robot stays within the union
of the swaths all along the path. If not, we use a signed
distance field (SDF) [26] to further adjust the position of
the planned point p*. An SDF is an occupancy grid that,
in addition to a bit indicating the safety of a given grid cell
or voxel, provides a vector pointing to the nearest safe cell.
This provides a computationally efficient means for adjusting
trajectory points that stray into unsafe regions.

An important concern when planning is bifurcations in
the neighbor graph: areas where demonstration trajectories
diverge into two (or more) qualitatively distinct strategies. A
common cause of bifurcations is physical obstacles that the

teacher must circumvent. In a two-dimensional workspace,
the potential for such obstacles may be reliably detected by
examining the swaths of workspace occupied during training.
More simply, the teacher may be instructed to demonstrate
only trajectories that follow the same path around and
between obstacles. If this instruction is observed, we can be
assured that interpolating between any demonstrations must
be safe (at least with respect to geometric constraints). All
such demonstrations are homotopic because there exists a
safe, continuous deformation between any pair of paths while
keeping start and end points fixed [27]. If two demonstrations
take different paths around an obstacle, say one to the left
and the other to the right, a continuous deformation between
them would pass through the obstacle, which is clearly not
desirable.

This strategy is demonstrated in the plane by [20], but
does not extend to higher dimensions. For instance, if the
previous example were extended to three dimensions, there
may be a safe path above the obstacle. Thus, the paths to
the left and the right could safely be continuously deformed
through this third path. The paths to the left and the right
are thus homotopic, but a simple linear interpolation is
not safe. In fact, the interpolation between them may be
arbitrarily complex. A robot learner should ideally reach
the same conclusion suggested by our intuition: these paths
follow separate strategies, and should be treated separately.
Moreover, the learner should take advantage of the teacher’s
knowledge in order to determine whether one strategy should
be preferred over the other.

Using the SDF to detect bifurcations is a tempting, but
incomplete, approach. We might produce trial robot poses
by interpolating between two trajectories, then test whether
these poses are safe. However, this will detect only those
bifurcations caused by physical obstacles. For a more general
approach, we once again rely up the neighbor graph. A
bifurcation in demonstration strategies should appear as a
localized partition in the graph. Example trajectories that are
linked in the graph at some point in time will no longer be

(a) Initial neighbors (b) Locally-weighted Average Action Plan

(c) Neighbor Extension (d) Plan Refinement

Fig. 4. (a) The graph-based planning algorithm begins with a partial plan (red points) and a set of neighbors (blue points) selected from among
demonstration trajectories (blue and white). (b) The initial estimate for the next plan point (red diamond) is computed using the locally-weighted average
of neighbor actions (black arrows). (c) Neighbors (blue) are selected for the new plan point. (d) The pose of the new plan point pt (red circle) is refined
using the new set of neighbors.

100

SOp e -

Percent of points in trajectory

— Demonstrations
— Lifted plan
— Learned plan

0 . . . T
Curvature —>

Fig. 5. The example trajectories (purple) from figure 3 with a new plan in blue. The graph on the right shows a cumulative curvature plot, illustrating
discontinuities of the lifted plan (in red), while the new plan (in blue) is smoother than the examples.

linked after the bifurcation. We use the normalized cuts graph or cluster, to the number of links between clusters. The links
partitioning algorithm [28] to detect these locations. This between clusters are cut to form partitions. A good partition
algorithm compares the number of links within a partition, should cut relatively few links, with a large number of links

remaining within clusters.

To apply this algorithm to trajectories, we iterate over the
points of each example trajectory to find clusters of points
that are densely linked to other examples relative to some
point in the near future. In our experiments, we compared the
interconnections at each query point to the interconnections
that exist between ten and 20 steps in the future. Since cuts
must occur between trajectories, all the points along a single
trajectory are coalesced into a single graph node and the best
normalized cut partition is calculated for each such node. In
most cases, when no bifurcation exists, the normalized cuts
algorithm will successfully assign all trajectories to the same
cluster. Otherwise, a high score will indicate that a partition
may exist. When many high scores occur within a few graph
links of one another, this collection of points is considered
to be a cut neighborhood, a region in which a bifurcation is
likely to exist.

To handle bifurcations, we use active learning, where the
robot learner asks the human teacher which branch of the
bifurcation is to be preferred. Rather than present graphical
representations of the trajectories on a computer screen,
which may be hard for novices to interpret, the robot learner
instead executes partial trial trajectories to demonstrate the
branches of the bifurcation. In this way, the user is given
a clear conception of what the robot plans to do. The user
may indicate that one plan or the other is to be preferred,
and future plans will follow that branch of the bifurcation.
That is, when a future plan encounters points from the cut
neighborhood, points from the preferred branch are used as
neighbors, but points from the other branch are not. The user
may also indicate “no preference,” in which case the planner
will choose a branch randomly, weighted by the number of
demonstrations provided in each branch.

A final possibility is that the user discerns no distinction
between the two branches. This may occur if the provided
trajectories are widely separated, causing the robot to discern
a bifurcation where none actually exists. In such cases, the
robot requests a new example demonstrating the possibility
of planning in the (currently) unknown region. The learner
solicits this additional demonstration by creating a plan that
approaches the bifurcation and proceeds through it, averaging
the trial trajectories, until it reaches a point no longer known
to be safe. At this point, the user is asked to continue the
task, essentially demonstrating the equivalence of the two
strategies by providing rajectory that bridges the gap. If the
learner continues to detect bifurcations, additional examples
are requested.

V. EXPERIMENTAL RESULTS

This planning algorithm has been tested in two experi-
mental domains. The wire maze domain (Figure 2) provides
a testbed for comparison with plans created in the reduced-
dimensionality latent space. Figure 5 illustrates a plan in
the maze domain created by our current approach. This plan
compares favorably to the jagged lifted plan of Figure 3,
produced by our previous approach [1]. To quantify our claim
that the current planning approach produces smooth plans,

Fig. 6. The artist domain, in which the task is to sweep a paint brush
across the board, while avoiding obstacles.

Figure 5, right, is a cumulative curvature plot that shows
the percentage of points with curvature less than or equal to
the value on the horizontal axis. The red curve, representing
the original plan lifted from the latent space, is shifted to
the right of the example trajectories, indicating that more
points in this trajectory have higher curvature. The blue line,
representing the new approach, is to the left of the example
trajectories, indicating that it is smoother than all of the
examples. This is mainly because our new approach averages
out the imperfections in the demonstration trajectories. While
not an explicit objective of the planner, this smoothing also
decrease trajectory length. On average, in this domain, the
new approach produces plans that are 1.5% shorter than the
demonstrations.

We also investigated the effects of adding more demon-
strations. An untrained user provided six demonstrations of
the wire maze task (mean curvature 3.86). With just two
examples, the planner produced a plan with mean curvature
of 3.86. Adding in one extra trajectory at a time, the mean
curvature decreased monotonically (and approximately lin-
early), reaching 3.2 using all six demonstration trajectories.

Fig. 7. A detailed view of the neighbor graph at a bifurcation.

In the second domain, which we call the artist domain
(Figure 6), the user is asked to paint a line across a board with

Fig. 8. Example trajectories in the artist domain. Half the examples loop
around an obstacle.

vertical dowel rods protruding. This domain was developed
to investigate the detection of bifurcations and the strategy
for planning through them. In particular, multiple strategies
are possible for traversing between and around the dowels.
Two sets of example trajectories are shown in Figures 7
and 8. Figure 7 shows six demonstrations that split in half.
The trajectories are shown in yellow and red, indicating
their partitioning into two groups at the bifurcation, and
their neighbor links are shown in blue. The six examples
in Figure 8 follow similar paths across the space, but half of
them take a detour in the form of a loop around one of the
dowel rods. This optional detour is correctly detected as a
bifurcation. Depending on the branch preferred by the user,
the learner’s future plans may, or may not, include this loop.

A user study was run to evaluate the ease and efficiency
of training, and to test the bifurcation detection technique.
18 participants, with varying degrees of experience with
robots, were recruited from Carnegie Mellon. 11 had no
prior experience with robots, 4 had general experience with
robots, and 3 considered themselves experienced with robotic
manipulation. They were requested to provide three demon-
strations each of two different strategies for achieving the
task. Most complied, but one provided only a single strategy
and one demonstrated four (Figure 9). The system success-
fully detected the bifurcations, except in the case where there
was only a single trajectory for the strategy. At the end,
the users filled out a survey on their experience, consisting
of 13 questions on a 5 point Likert scale. Chronbach’s
alpha was used to cluster responses that were internally
consistent, and we ended up with four general categories:
ease of programming, quality of plans, training questions
(the robot’s active learning) and effectiveness of learning.
With respect to ease of programming, all users felt that
the approach was effective (mean 1.22) but inexperienced
users rated the ease of use significantly higher than more
experienced users. In terms of quality of plans, the users
rated the plans as reasonably good (mean 1.861), although
the 3 users with manipulator experience rated the plans worse
(2.5, but that did not reach significance). The responses to
the adequacy of the robot’s training questions tended towards
neutral (2.5), but with large variation, and the effectiveness

Path Length Curvature
Dataset Mean | Std. Dev. | Mean | Median
maze:
demonstrations 1.52 0.053 3.83 3.75
planned 1.50 0.060 3.20 3.16
artist:
demonstrations | 0.702 0.211 3.64 2.83
planned | 0.608 0.154 1.82 1.43

TABLE I
USER TRIAL STATISTICS

of learning question had a mean of 1.611, indicating general
agreement that the robot’s plan followed the strategy the
teacher chose to convey. The data show a trend towards
more positive assessment as experience decreases, but not
to statistical significance.

Fig. 9. A set of demonstrations from a single user. Four distinct strategies
are shown in different colors. Our system detected two bifurcations, but did
not detect the singleton strategy shown in yellow.

In addition, we quantified the improvements in path length
and smoothness achieved by the planner in both domains.
Table I presents the mean and standard deviation of path
lengths across all demonstration and planned trajectories.
For curvature, we instead report mean and median; standard
deviation is less informative because the trajectories consist
of curved and straight segments. In both cases, the planned
trajectories are significantly smoother. The improvement is
most pronounced in the artist domain, where the task and
workspace were far less constrained, and the mean curvature
is reduced by 50%. This helps support our claim that the
approach is applicable to users who are not robotics experts.
Similarly, the planned artist trajectories are, on average, 13%
shorter than the average of the demonstrations, although there
is wide variance amongst the different strategies (ranging
from under 1% to 28% shorter).

VI. CONCLUSIONS AND FUTURE WORK

The planning by demonstration manipulator motion plan-
ning algorithm described here is able to successfully create
safe, smooth, novel plans using only demonstrations provided
by a domain expert and a volumetric model of the robot.
This represents a feasible method for novices in robotics to
train a robot to perform sophisticated motion tasks without
programming or modeling the environment. In particular, the
approach enables the teacher to indicate both geometric and
non-geometric constraints to the robot learner. While the
approach smooths out jitter and inconsistencies, it maintains

the essential characteristics of the demonstrations, including
small perturbations that are consistent across the various
demonstration trajectories.

One extension is to consider additional objectives, such
as path smoothness constraints or non-uniform costs over
regions of the work space. The current implementation
preserves high-frequency noise only in areas where that noise
is correlated between multiple examples. Otherwise, it is
eliminated as unintended jitter when, in fact, small random
motions may be necessary for some sorts of tasks. Another
extension is to apply our approach to other types of robotic
platforms. Although our focus has been on redundant robot
manipulators, the approach is equally applicable to mobile
robot platforms. Planning on a non-holonomic base is likely
to present a unique set of challenges, however, particularly if
dynamics are to be considered. A significant extension is to
learn safe trajectories in the presence of moving obstacles.
While this would necessitate detecting obstacles, we still
would not have to model them explicitly within the planner.
Finally, we would like to analyze our approach more formally
— the approach uses a number of heuristics and parameters,
and it would be useful to investigate how these choices
affect performance and the guarantees associated with the
approach.

In summary, we believe that our approach will enable
domain experts to teach robots effectively and efficiently,
with minimal training in robotics. As a result of this, and
similar efforts, we anticipate that autonomous robots will
become applicable to a much wider variety of domains.

VII. ACKNOWLEDGMENTS

This work was supported by AFOSR grant #FA2386-10-
1-4138 and NASA award NNX06AD23G under subcontract
7627402.

REFERENCES

[1] N. A. Melchior and R. Simmons, “Dimensionality reduction for
trajectory learning from demonstration,” in Proceedings International
Conference on Robotics and Automation, May 2010.

[2] H. Asada and H. Izumi, “Automatic program generation from teaching
data for the hybrid control of robots,” IEEE Transactions on Robotics
and Automation, vol. 5, pp. 166-173, 1989.

[3] H. Asada, “Teaching and learning of compliance using neural nets:
representation and generation of nonlinear compliance,” in Proceed-
ings International Conference on Robotics and Automation, vol. 2,
1990, pp. 1237-1244.

[4] J. Chen and A. Zelinsky, “Programing by demonstration: Coping
with suboptimal teaching actions,” International Journal of Robotics
Research, vol. 22, no. 5, pp. 299-319, 2003.

[5] M. Stolle and C. Atkeson, “Policies based on trajectory libraries,” in

Proceedings International Conference on Robotics and Automation,

2006, pp. 3344-3349.

J. Aleotti, S. Caselli, and G. Maccherozzi, “Trajectory reconstruction

with nurbs curves for robot programming by demonstration,” in

Proceedings International Symposium on Computational Intelligence

in Robotics and Automation, 2005, pp. 73-78.

H. Friedrich, J. Holle, and R. Dillmann, “Interactive generation of

flexible robot programs,” in Proceedings International Conference on

Robotics and Automation, vol. 1, 1998, pp. 538-543.

D. Bentivegna and C. Atkeson, “Learning from observation using

primitives,” in Proceedings International Conference on Robotics and

Automation, vol. 2, 2001, pp. 1988— 1993 vol.2.

[6

=

[7

—

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from
human demonstration using a hidden markov model,” in Proceedings
International Conference on Robotics and Automation, Minneapolis,
MN, 1996, pp. 2706-2711.

M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Transactions on Robotics, 2008.

J. D. Bagnell and J. Schneider, “Autonomous helicopter control
using reinforcement learning policy search methods,” in Proceedings
International Conference on Robotics and Automation, May 2001.

P. Maes and R. A. Brooks, “Learning to coordinate behaviors,” in
Proceedings National Conference on Artificial Intelligence, 1990, pp.
796-802.

B. Argall, B. Browning, and M. Veloso, “Learning by demonstration
with critique from a human teacher,” in Proceedings International
Conference on Human-Robot Interaction. Arlington, Virginia, USA:
ACM Press, 2007, pp. 57-64.

S. Chernova and M. Veloso, “Tree-based policy learning in continuous
domains through teaching by demonstration,” in Modeling Others

from Observations: Papers from the AAAI Workshop, G. Kaminka,

D. Pynadath, and C. Geib, Eds.
Intelligence, 2006, pp. 24-31.
N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in Advances in Neural
Information Processing Systems 19. Cambridge, MA: MIT Press,
2007.

A. Ude, C. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using b-spline wavelets,” in Proceedings Inter-
national Conference on Robotics and Automation, vol. 3, 2000, pp.
2223-2228 vol.3.

C. Lee, “A phase space spline smoother for fitting trajectories,” IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 34, pp.
346-356, 2004.

H. Mayer, 1. Nagy, A. Knoll, E. Braun, R. Lange, and R. Bauern-
schmitt, “Adaptive control for human-robot skilltransfer: Trajectory
planning based on fluid dynamics,” in Proceedings International
Conference on Robotics and Automation, Rome, Italy, 2007.

E. Drumwright, O. Jenkins, and M. Matari¢, “Exemplar-based primi-
tives for humanoid movement classification and control,” in Proceed-
ings International Conference on Robotics and Automation, vol. 1,
2004, pp. 140-145.

N. Delson and H. West, “Robot programming by human demonstra-
tion: adaptation and inconsistency in constrained motion,” in Proceed-
ings International Conference on Robotics and Automation, vol. 1,
1996, pp. 30-36.

——, “Robot programming by human demonstration: the use of hu-
man variation in identifying obstacle free trajectories,” in Proceedings
International Conference on Robotics and Automation, vol. 1, 1994,
pp. 564-571.

S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining PCA, ICA and HMM,”
in Proceedings International Conference on Machine Learning, 2005,
pp. 105-112.

0. C. Jenkins and M. J. Matari¢, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” in Proceedings International
Conference on Machine Learning. Banff, Alberta, Canada: ACM
Press, 2004, p. 56.

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319-2323, Dec. 2000.

A. Tsoli and O. C. Jenkins, “Neighborhood denoising for learning
high-dimensional grasping manifolds,” in International Conference on
Intelligent Robots and Systems, Nice, France, Sep 2008, pp. 3680-
3685.

J. A. Sethian, Level Set Methods and Fast Marching Methods.
bridge University Press, 1999.

J. R. Munkres, Topology. Upper Saddle River, NJ: Prentice Hall,
2000.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proceedings Conference on Computer Vision and Pattern Recognition
(CVPR). Washington, DC, USA: IEEE Computer Society, 1997.

American Association for Artificial

Cam-

