
Graph-based Trajectory Planning through

Programming by Demonstration

Nik A. Melchior and Reid Simmons1

Abstract— As robots are utilized in a growing number of
applications, the ability to teach them to perform tasks safely
and accurately becomes ever more critical. Programming by
demonstration offers an expressive means for teaching while
being accessible to domain experts who may be novices in
robotics. This work investigates a programming by demon-
stration approach to learning motion trajectories for robotic
manipulator tasks. Using a graph constructed to determine
correspondences between multiple imperfect demonstrations,
the robot learner plans novel trajectories that safely and
smoothly generalize the teacher’s behavior, while attenuating
those imperfections. The learner also actively detects instances
of diverging strategy between examples, requesting advice for
resolving these ambiguities. We demonstrate our approach in
example domains with a 7 degree-of-freedom manipulator.

I. INTRODUCTION

Robots are becoming more common in many domains:

They are used as tools for manufacturing, instruments for

surgery, and toys for consumers. As their areas of application

expand, it becomes increasingly critical to reliably transfer

task knowledge to the robot. While domain experts often can

be found who understand the task, they may know nothing

about programming robots. Programming by demonstration

(PbD) is an approach that facilitates knowledge transfer from

a domain expert to an autonomous system. It provides an

intuitive approach for someone skilled in performing a task to

teach a robot to perform that task without having to learn to

program the robot. Conversely, it does not require a robotics

expert to become skilled in the task.

A primary difficulty in PbD approaches to robotic ma-

nipulation is representing and understanding the constraints

imposed by the physical world. Geometric constraints, in-

cluding the locations of physical obstacles, are the most

obvious issues, since detecting the locations of objects can

be difficult for current sensor technologies. Vision or LIDAR

sensors must be located to observe the entire environment,

without suffering from occlusion due to the objects or the

robot itself. Alternately, the robot may be provided with an a

priori model of the objects of interest, but constructing this

model may require the skills of a robotics specialist.

Even if a model could be constructed to provide the robot

with knowledge of obstacles, non-geometric task constraints

must also be considered. For example, a robot carrying

a cup of liquid must maintain its end-effector orientation

to avoid spilling. Similarly, a robot routing cable around

complex objects may need to follow a particular path to avoid

snagging the cable. While a detailed physical simulation may

1Robotics Institute of Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, USA; {nmelchio,reids}@cs.cmu.edu

be able to detect violations of such constraints, it would be

challenging for a novice robot user to communicate them

to a planner. However, if a user is able to demonstrate

successful strategies for completing the task, he does not

need to articulate the criteria that he is optimizing in a

manner comprehensible to the robot.

Thus, PbD enables domain experts to teach robots about

geometric and non-geometric task constraints without explic-

itly formalizing those constraints. The robot then create novel

plans respecting the constraints, generalizing the actions

performed by the teacher. In this work, we present a method

for planning novel motion trajectories for robot manipulators

based on demonstrations. Our approach learns to perform

fixed, repetitive tasks in the presence of static obstacles,

with minor variations due to uncertainty in both initial

conditions and the ability to follow a trajectory precisely.

In particular, we do not assume that example demonstrations

are flawless, but rather that they contain jitter, non-optimal

movements, and inconsistencies between examples. The

robot must therefore discern the essential motions common

to multiple examples and incorporate them in novel plans.

In addition, we assume that the examples may differ in

essential characteristics, making it difficult for the robot to

combine the trajectories into a single, learned strategy. In

such cases, the robot must refine its knowledge by actively

requesting additional information from the teacher, in order

to differentiate the manipulation strategies.

Our approach relies on a neighbor graph over the demon-

strations, a representation that relates discretely sampled

points from example trajectories. Our previous work [1],

summarized in Section III, details a method to build such

a data structure. The planning algorithm contributed in the

present work uses this neighbor graph to create new plans

that are guaranteed to be safe (avoiding obstacles) as long

as the demonstration trajectories are also safe. Each point

in a new plan is constructed using a set of neighbors from

the demonstration set, refined to reduce jitter and minor

inconsistencies, while maintaining the essential (common)

characteristics of the demonstration trajectories. The plan-

ning algorithm also detects demonstrations that cluster into

qualitatively distinct trajectories (for instance, circumventing

an obstacle by two entirely different routes). In such cases,

the robot requests additional advice from the operator to

determine which strategy should be preferred. Experimen-

tal results in Section V demonstrate our approach in two

different domains: The robot learner is able to safely trace

a smooth path through a maze (with a single solution) and

across a planar surface with multiple obstacles and multiple



demonstrated routes between them. We also present results

from a user study that indicates how well novices can use

our approach to train the robot.

II. RELATED WORK

Approaches to programming by demonstration differ

widely in their use of prior knowledge and the models used

to create new plans. Simplified motion or world models [2],

[3], [4] and even traditional motion planning [5] can be used

to plan between demonstrated states if an environment model

is available. Use of the model may alternately be limited to

collision testing plans created by other methods [6], [7].

Many approaches collect similar actions into libraries,

which can be applied to create motion plans for new tasks

or situations. [8], [9]. Others attempt to learn dynamical

models of the system using GMMs [10], Neural Networks

[11], or other statistical feedback techniques [12]. These

models may then be used to create new plans. Feature-

based policy-learning approaches such as that of Argall [13],

Chernova [14], and Ratliff [15] also create results that are

applicable to new tasks and domains.

Our approach is most similar in spirit to data-driven

approaches such as the interpolation-based methods of

Ude [16], Lee [17] and Aleotti [6] or flow-field techniques

developed by Mayer [18] and Drumwright [19]. These

approaches, like ours, focus on learning entire tasks (or

portions of tasks) at a time, rather than computing an action

based solely on local features. Among similar approaches,

only Delson’s work [20], though, explicitly considers safety

during the generation of novel trajectories. This approach

is most completely developed in two dimensions, but an

extension to three dimensions is presented in [21].

Dimensionality reduction approaches attempt to discover

a lower dimensional representation of the demonstrated mo-

tions that retains the crucial features of the examples. While

some such approaches use techniques, such as PCA, that

retain as much variance as possible [22], others attempt

to directly estimate correspondences between portions of

example trajectories [23]. Rather than optimize for variance

across the entire dataset, this alternative, which builds upon

Isomap [24], optimizes for distances between points in the

dataset. This approach requires a neighbor graph connecting

points that are considered qualitatively similar. Distances

between neighboring points are calculated directly using the

metric of choice (e.g. Euclidean), but all other pairwise

distances are calculated as the sum of shortest-path link dis-

tances through the neighbor graph. These geodesic distances

indicate the nearness of points in terms of task execution, and

provide a basis for determining which points can reasonably

be clustered and interpolated.

III. BACKGROUND

Our previously reported work [1] developed a neighbor-

finding technique that used a set of heuristics to produce a

neighbor graph suitable for reduced-dimensionality planning.

Planning in a low-dimensional latent space is attractive

because the arrangement of trajectory points in this space

(a) Demonstration slalom trajectories (blue) with neighbor links (red).

(b) Slalom trajectories in the latent space.

Fig. 1. Slalom trajectories.

is expected to correlate with the semantics of the task.

For example, the trajectories of Figure 1(a) cross over

themselves in work space, but are “unrolled” in the latent

space (Figure 1(b)). The start and goal points, previously

close to one another, are now at opposite ends of the

horizontal axis. Thus, this dimension represents progress

through the task, while the vertical dimension separates

distinct demonstrations. Planning through this space would

seem to be intuitive since movement in each direction has a

semantic explanation.

Unfortunately, we have found that this and similar ap-

proaches to dimensionality reduction do not lead to robust

planning. For one, distances in the neighbor graph are par-

ticularly susceptible to spurious neighbor links. While these

algorithms are robust to a large number of false negatives

(missing neighbor links), even a single false positive link

can have disastrous effects on the embedding [25]. This

is because spurious neighbor links create “short circuit”

connections between unrelated portions of trajectories, thus

lowering the geodesic distances between points in seman-

tically distant regions. This forces the embedding to retain

the proximity of these regions in the low-dimensional latent

space, introducing false semantic relevance between points.

While our neighbor-finding approach mostly avoids the

problem of spurious neighbor links [1], another fundamental

problem is that lifting novel trajectories from the latent space

back to the work (Euclidean or configuration) space often

produces second-order discontinuities. Lifting is typically

performed by projecting discrete points sampled from the

trajectory in the latent space into the work space. Individual

query points are lifted by considering nearby sample points

whose corresponding high-dimensional points are known.

The high-dimensional point corresponding to the query is

calculated by interpolating between the high-dimensional

neighbor points, weighted by their distance from the query

in the low-dimensional space. Unfortunately, non-linear em-



Fig. 2. The WAM manipulator traversing a wire maze. The fiducial in the
lower-left is used to detect the location of the rig relative to the robot.

beddings, such as Isomap [24], do not guarantee smoothness

of lifted trajectories, even when points are densely sampled

from a smooth latent-space trajectory. Moreover, because

dimensionality reduction is not injective (multiple regions

of the work space can map to the same regions of the latent

space), there may be ambiguities in lifting points back to

the work space. These problems are actually exacerbated as

additional example trajectories are provided to the learner.

More examples produce a more cluttered latent space with

more interconnections between neighbor points. This creates

additional opportunities for discontinuities in lifted trajec-

tories. Clearly, decreasing performance with an increasing

amount of information is not a desired attribute of a planner.

These problems are clearly illustrated in our wire maze

domain (Figure 2). Here, participants were asked to guide

a 7-DOF Barrett WAM arm through a wire maze, with

the arm in passive gravity-compensation mode. Figure 3

displays workspace traces of six demonstration trajectories

(in purple) beginning at the green points near the bottom

of the image and ending at the red points. The latent

space embedding created by our algorithm is shown on

the right. As expected, this embedding essentially “unrolls”

the trajectories, stretching them out so that task time, or

progression through the maze, maps from left to right on

the horizontal axis. The vertical axis provides a dimension

for variation between examples. The blue line represents a

candidate plan, created as a series of line segments stretching

from the start to the goal in the latent space. Discontinuities

result, however, when this plan is lifted back to the original

workspace in the left image. Although a post-processing step

could be applied to smooth the planned trajectory, it is not

clear whether a smoothed version would follow the nuances

of the demonstration trajectories, or even maintain safety.

IV. APPROACH

The approach described in this paper addresses these

issues by planning directly in the work space. We still use

the neighbor graph to determine correspondences between

trajectory points, but rather than planning in the latent

space, interpolation and distance calculations are performed

in the original (higher-dimensional) work space. Our planner

interpolates between the multiple demonstration trajectories,

eliding inconsistencies (errors and suboptimal motions) while

maintaining the essential geometric characteristics of the

demonstrations.

As the first step in neighbor finding, we uniformly sample

each trajectory at fixed distances in the work space. The

sampling is done to compensate for temporal differences

in the demonstrations (this assumes that dynamics are not

fundamental to task achievement). Then, heuristics (de-

scribed in detail in [1]) are used to find correspondences

between neighboring points. The heuristics attempt to find

local coherence between trajectories; for instance, encoding

the idea that corresponding points are more likely to have

nearby predecessors that also correspond. The result is a

graph where connections between trajectories (usually) in-

dicate semantically meaningful matches, while points that

remain unmatched typically result from imperfections in the

demonstrations, such as jitter or small detours.

The planning algorithm proceeds iteratively by calculating

an action to take based on a set of neighbor points and

then choosing a new set of neighbor points based on that

action, until a goal state is reached. The initial set of neighbor

points is chosen simply as those nearest the start state of the

robot. The action is computed as a locally weighted average

of the actions associated with each point in the neighbor

set (Fig. 4(b)). Since the points in the neighbor graph are

sampled from the demonstration trajectories, the actions

recorded during demonstration do not necessarily correspond

exactly to those points. Instead, actions are computed as the

vector from the current neighbor point to its subsequent point

in the same trajectory. As a matter of notation, we represent

an example trajectory point as ti and its successor as t+
i

.

Thus, given N neighbors of a plan point p, their weights

wn, normalization factor W , and the subsequent plan point

p+ are calculated as:

wn = |tn − p|

W =

N
∑

n=0

wn

p+
= p +

N
∑

n=0

wn

W

(

t+
n
− tn

)

The next step is to select a new set of neighbors. These are

not merely the closest points to p+, but must also represent

portions of the demonstration trajectories at semantically

equivalent states during execution of the task. Since distinct

portions of the trajectories may appear in close proximity

in non-Markovian regions (c.f. Figure 1) we need to rely

on points that are close geodesically in the neighbor graph.

However, because the demonstration trajectories may have

small imperfections, rather than simply advancing to the set

of points subsequent to the previous neighbors, we search



Fig. 3. Traces of the end-effector position while traversing the wire maze, shown in the workspace (left) and in the learned reduced dimensionality space
(right). The light blue trace is a naı̈ve plan created in the reduced dimensionality space, then lifted to the original workspace.

near p+, removing neighbors that are too far away and

adding new neighbors that are nearby in both metric and

graph distance (Fig. 4(c)). In our experiments, we found

that searching for points within du (the trajectory sampling

distance) of p+ and three graph links from the previous

neighbor set gave good results.

Finally, we refine our choice of p+. While the action

computed from the neighbor set faithfully reproduces the

actions demonstrated by the teacher at that point in the

task, undesired actions are represented as well. We thus

adjust p+ toward a position that is both representative of

the average action performed by the teacher and close to the

new neighbor set. To do this, we place a Gaussian over each

new neighbor and use gradient ascent to refine the position of

p+. Figure 4(d) illustrates level sets of this reward function

around the new neighbors. The new plan point is refined to

lie at a local peak of this function.

This approach to planning ensures that interpolation occurs

only between demonstrated points that are similar in pose and

graph distance: precisely where interpolation is expected to

safely respect both geometric and non-geometric constraints.

In addition, we use a volumetric model of the robot to ensure

safe operation. A CAD model of the robot is used to calculate

the volume of space that the robot occupies as it moves

through the demonstration trajectories. These swaths of space

are known to be free of physical obstacles. Then, during

planning, we check whether the robot stays within the union

of the swaths all along the path. If not, we use a signed

distance field (SDF) [26] to further adjust the position of

the planned point p+. An SDF is an occupancy grid that,

in addition to a bit indicating the safety of a given grid cell

or voxel, provides a vector pointing to the nearest safe cell.

This provides a computationally efficient means for adjusting

trajectory points that stray into unsafe regions.

An important concern when planning is bifurcations in

the neighbor graph: areas where demonstration trajectories

diverge into two (or more) qualitatively distinct strategies. A

common cause of bifurcations is physical obstacles that the

teacher must circumvent. In a two-dimensional workspace,

the potential for such obstacles may be reliably detected by

examining the swaths of workspace occupied during training.

More simply, the teacher may be instructed to demonstrate

only trajectories that follow the same path around and

between obstacles. If this instruction is observed, we can be

assured that interpolating between any demonstrations must

be safe (at least with respect to geometric constraints). All

such demonstrations are homotopic because there exists a

safe, continuous deformation between any pair of paths while

keeping start and end points fixed [27]. If two demonstrations

take different paths around an obstacle, say one to the left

and the other to the right, a continuous deformation between

them would pass through the obstacle, which is clearly not

desirable.

This strategy is demonstrated in the plane by [20], but

does not extend to higher dimensions. For instance, if the

previous example were extended to three dimensions, there

may be a safe path above the obstacle. Thus, the paths to

the left and the right could safely be continuously deformed

through this third path. The paths to the left and the right

are thus homotopic, but a simple linear interpolation is

not safe. In fact, the interpolation between them may be

arbitrarily complex. A robot learner should ideally reach

the same conclusion suggested by our intuition: these paths

follow separate strategies, and should be treated separately.

Moreover, the learner should take advantage of the teacher’s

knowledge in order to determine whether one strategy should

be preferred over the other.

Using the SDF to detect bifurcations is a tempting, but

incomplete, approach. We might produce trial robot poses

by interpolating between two trajectories, then test whether

these poses are safe. However, this will detect only those

bifurcations caused by physical obstacles. For a more general

approach, we once again rely up the neighbor graph. A

bifurcation in demonstration strategies should appear as a

localized partition in the graph. Example trajectories that are

linked in the graph at some point in time will no longer be



(a) Initial neighbors (b) Locally-weighted Average Action Plan

(c) Neighbor Extension (d) Plan Refinement

Fig. 4. (a) The graph-based planning algorithm begins with a partial plan (red points) and a set of neighbors (blue points) selected from among
demonstration trajectories (blue and white). (b) The initial estimate for the next plan point (red diamond) is computed using the locally-weighted average
of neighbor actions (black arrows). (c) Neighbors (blue) are selected for the new plan point. (d) The pose of the new plan point p

+ (red circle) is refined
using the new set of neighbors.

Fig. 5. The example trajectories (purple) from figure 3 with a new plan in blue. The graph on the right shows a cumulative curvature plot, illustrating
discontinuities of the lifted plan (in red), while the new plan (in blue) is smoother than the examples.

linked after the bifurcation. We use the normalized cuts graph

partitioning algorithm [28] to detect these locations. This

algorithm compares the number of links within a partition,

or cluster, to the number of links between clusters. The links

between clusters are cut to form partitions. A good partition

should cut relatively few links, with a large number of links



remaining within clusters.

To apply this algorithm to trajectories, we iterate over the

points of each example trajectory to find clusters of points

that are densely linked to other examples relative to some

point in the near future. In our experiments, we compared the

interconnections at each query point to the interconnections

that exist between ten and 20 steps in the future. Since cuts

must occur between trajectories, all the points along a single

trajectory are coalesced into a single graph node and the best

normalized cut partition is calculated for each such node. In

most cases, when no bifurcation exists, the normalized cuts

algorithm will successfully assign all trajectories to the same

cluster. Otherwise, a high score will indicate that a partition

may exist. When many high scores occur within a few graph

links of one another, this collection of points is considered

to be a cut neighborhood, a region in which a bifurcation is

likely to exist.

To handle bifurcations, we use active learning, where the

robot learner asks the human teacher which branch of the

bifurcation is to be preferred. Rather than present graphical

representations of the trajectories on a computer screen,

which may be hard for novices to interpret, the robot learner

instead executes partial trial trajectories to demonstrate the

branches of the bifurcation. In this way, the user is given

a clear conception of what the robot plans to do. The user

may indicate that one plan or the other is to be preferred,

and future plans will follow that branch of the bifurcation.

That is, when a future plan encounters points from the cut

neighborhood, points from the preferred branch are used as

neighbors, but points from the other branch are not. The user

may also indicate “no preference,” in which case the planner

will choose a branch randomly, weighted by the number of

demonstrations provided in each branch.

A final possibility is that the user discerns no distinction

between the two branches. This may occur if the provided

trajectories are widely separated, causing the robot to discern

a bifurcation where none actually exists. In such cases, the

robot requests a new example demonstrating the possibility

of planning in the (currently) unknown region. The learner

solicits this additional demonstration by creating a plan that

approaches the bifurcation and proceeds through it, averaging

the trial trajectories, until it reaches a point no longer known

to be safe. At this point, the user is asked to continue the

task, essentially demonstrating the equivalence of the two

strategies by providing ⁀rajectory that bridges the gap. If the

learner continues to detect bifurcations, additional examples

are requested.

V. EXPERIMENTAL RESULTS

This planning algorithm has been tested in two experi-

mental domains. The wire maze domain (Figure 2) provides

a testbed for comparison with plans created in the reduced-

dimensionality latent space. Figure 5 illustrates a plan in

the maze domain created by our current approach. This plan

compares favorably to the jagged lifted plan of Figure 3,

produced by our previous approach [1]. To quantify our claim

that the current planning approach produces smooth plans,

Fig. 6. The artist domain, in which the task is to sweep a paint brush
across the board, while avoiding obstacles.

Figure 5, right, is a cumulative curvature plot that shows

the percentage of points with curvature less than or equal to

the value on the horizontal axis. The red curve, representing

the original plan lifted from the latent space, is shifted to

the right of the example trajectories, indicating that more

points in this trajectory have higher curvature. The blue line,

representing the new approach, is to the left of the example

trajectories, indicating that it is smoother than all of the

examples. This is mainly because our new approach averages

out the imperfections in the demonstration trajectories. While

not an explicit objective of the planner, this smoothing also

decrease trajectory length. On average, in this domain, the

new approach produces plans that are 1.5% shorter than the

demonstrations.

We also investigated the effects of adding more demon-

strations. An untrained user provided six demonstrations of

the wire maze task (mean curvature 3.86). With just two

examples, the planner produced a plan with mean curvature

of 3.86. Adding in one extra trajectory at a time, the mean

curvature decreased monotonically (and approximately lin-

early), reaching 3.2 using all six demonstration trajectories.

Fig. 7. A detailed view of the neighbor graph at a bifurcation.

In the second domain, which we call the artist domain

(Figure 6), the user is asked to paint a line across a board with



Fig. 8. Example trajectories in the artist domain. Half the examples loop
around an obstacle.

vertical dowel rods protruding. This domain was developed

to investigate the detection of bifurcations and the strategy

for planning through them. In particular, multiple strategies

are possible for traversing between and around the dowels.

Two sets of example trajectories are shown in Figures 7

and 8. Figure 7 shows six demonstrations that split in half.

The trajectories are shown in yellow and red, indicating

their partitioning into two groups at the bifurcation, and

their neighbor links are shown in blue. The six examples

in Figure 8 follow similar paths across the space, but half of

them take a detour in the form of a loop around one of the

dowel rods. This optional detour is correctly detected as a

bifurcation. Depending on the branch preferred by the user,

the learner’s future plans may, or may not, include this loop.

A user study was run to evaluate the ease and efficiency

of training, and to test the bifurcation detection technique.

18 participants, with varying degrees of experience with

robots, were recruited from Carnegie Mellon. 11 had no

prior experience with robots, 4 had general experience with

robots, and 3 considered themselves experienced with robotic

manipulation. They were requested to provide three demon-

strations each of two different strategies for achieving the

task. Most complied, but one provided only a single strategy

and one demonstrated four (Figure 9). The system success-

fully detected the bifurcations, except in the case where there

was only a single trajectory for the strategy. At the end,

the users filled out a survey on their experience, consisting

of 13 questions on a 5 point Likert scale. Chronbach’s

alpha was used to cluster responses that were internally

consistent, and we ended up with four general categories:

ease of programming, quality of plans, training questions

(the robot’s active learning) and effectiveness of learning.

With respect to ease of programming, all users felt that

the approach was effective (mean 1.22) but inexperienced

users rated the ease of use significantly higher than more

experienced users. In terms of quality of plans, the users

rated the plans as reasonably good (mean 1.861), although

the 3 users with manipulator experience rated the plans worse

(2.5, but that did not reach significance). The responses to

the adequacy of the robot’s training questions tended towards

neutral (2.5), but with large variation, and the effectiveness

Path Length Curvature
Dataset Mean Std. Dev. Mean Median

maze:

demonstrations 1.52 0.053 3.83 3.75
planned 1.50 0.060 3.20 3.16

artist:

demonstrations 0.702 0.211 3.64 2.83
planned 0.608 0.154 1.82 1.43

TABLE I

USER TRIAL STATISTICS

of learning question had a mean of 1.611, indicating general

agreement that the robot’s plan followed the strategy the

teacher chose to convey. The data show a trend towards

more positive assessment as experience decreases, but not

to statistical significance.

Fig. 9. A set of demonstrations from a single user. Four distinct strategies
are shown in different colors. Our system detected two bifurcations, but did
not detect the singleton strategy shown in yellow.

In addition, we quantified the improvements in path length

and smoothness achieved by the planner in both domains.

Table I presents the mean and standard deviation of path

lengths across all demonstration and planned trajectories.

For curvature, we instead report mean and median; standard

deviation is less informative because the trajectories consist

of curved and straight segments. In both cases, the planned

trajectories are significantly smoother. The improvement is

most pronounced in the artist domain, where the task and

workspace were far less constrained, and the mean curvature

is reduced by 50%. This helps support our claim that the

approach is applicable to users who are not robotics experts.

Similarly, the planned artist trajectories are, on average, 13%

shorter than the average of the demonstrations, although there

is wide variance amongst the different strategies (ranging

from under 1% to 28% shorter).

VI. CONCLUSIONS AND FUTURE WORK

The planning by demonstration manipulator motion plan-

ning algorithm described here is able to successfully create

safe, smooth, novel plans using only demonstrations provided

by a domain expert and a volumetric model of the robot.

This represents a feasible method for novices in robotics to

train a robot to perform sophisticated motion tasks without

programming or modeling the environment. In particular, the

approach enables the teacher to indicate both geometric and

non-geometric constraints to the robot learner. While the

approach smooths out jitter and inconsistencies, it maintains



the essential characteristics of the demonstrations, including

small perturbations that are consistent across the various

demonstration trajectories.

One extension is to consider additional objectives, such

as path smoothness constraints or non-uniform costs over

regions of the work space. The current implementation

preserves high-frequency noise only in areas where that noise

is correlated between multiple examples. Otherwise, it is

eliminated as unintended jitter when, in fact, small random

motions may be necessary for some sorts of tasks. Another

extension is to apply our approach to other types of robotic

platforms. Although our focus has been on redundant robot

manipulators, the approach is equally applicable to mobile

robot platforms. Planning on a non-holonomic base is likely

to present a unique set of challenges, however, particularly if

dynamics are to be considered. A significant extension is to

learn safe trajectories in the presence of moving obstacles.

While this would necessitate detecting obstacles, we still

would not have to model them explicitly within the planner.

Finally, we would like to analyze our approach more formally

– the approach uses a number of heuristics and parameters,

and it would be useful to investigate how these choices

affect performance and the guarantees associated with the

approach.

In summary, we believe that our approach will enable

domain experts to teach robots effectively and efficiently,

with minimal training in robotics. As a result of this, and

similar efforts, we anticipate that autonomous robots will

become applicable to a much wider variety of domains.

VII. ACKNOWLEDGMENTS

This work was supported by AFOSR grant #FA2386-10-

1-4138 and NASA award NNX06AD23G under subcontract

Z627402.

REFERENCES

[1] N. A. Melchior and R. Simmons, “Dimensionality reduction for
trajectory learning from demonstration,” in Proceedings International

Conference on Robotics and Automation, May 2010.

[2] H. Asada and H. Izumi, “Automatic program generation from teaching
data for the hybrid control of robots,” IEEE Transactions on Robotics

and Automation, vol. 5, pp. 166–173, 1989.

[3] H. Asada, “Teaching and learning of compliance using neural nets:
representation and generation of nonlinear compliance,” in Proceed-

ings International Conference on Robotics and Automation, vol. 2,
1990, pp. 1237–1244.

[4] J. Chen and A. Zelinsky, “Programing by demonstration: Coping
with suboptimal teaching actions,” International Journal of Robotics

Research, vol. 22, no. 5, pp. 299–319, 2003.

[5] M. Stolle and C. Atkeson, “Policies based on trajectory libraries,” in
Proceedings International Conference on Robotics and Automation,
2006, pp. 3344–3349.

[6] J. Aleotti, S. Caselli, and G. Maccherozzi, “Trajectory reconstruction
with nurbs curves for robot programming by demonstration,” in
Proceedings International Symposium on Computational Intelligence

in Robotics and Automation, 2005, pp. 73–78.

[7] H. Friedrich, J. Holle, and R. Dillmann, “Interactive generation of
flexible robot programs,” in Proceedings International Conference on

Robotics and Automation, vol. 1, 1998, pp. 538–543.

[8] D. Bentivegna and C. Atkeson, “Learning from observation using
primitives,” in Proceedings International Conference on Robotics and

Automation, vol. 2, 2001, pp. 1988– 1993 vol.2.

[9] G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from
human demonstration using a hidden markov model,” in Proceedings

International Conference on Robotics and Automation, Minneapolis,
MN, 1996, pp. 2706–2711.

[10] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE

Transactions on Robotics, 2008.
[11] J. D. Bagnell and J. Schneider, “Autonomous helicopter control

using reinforcement learning policy search methods,” in Proceedings

International Conference on Robotics and Automation, May 2001.
[12] P. Maes and R. A. Brooks, “Learning to coordinate behaviors,” in

Proceedings National Conference on Artificial Intelligence, 1990, pp.
796–802.

[13] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration
with critique from a human teacher,” in Proceedings International

Conference on Human-Robot Interaction. Arlington, Virginia, USA:
ACM Press, 2007, pp. 57–64.

[14] S. Chernova and M. Veloso, “Tree-based policy learning in continuous
domains through teaching by demonstration,” in Modeling Others

from Observations: Papers from the AAAI Workshop, G. Kaminka,
D. Pynadath, and C. Geib, Eds. American Association for Artificial
Intelligence, 2006, pp. 24–31.

[15] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in Advances in Neural

Information Processing Systems 19. Cambridge, MA: MIT Press,
2007.

[16] A. Ude, C. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using b-spline wavelets,” in Proceedings Inter-

national Conference on Robotics and Automation, vol. 3, 2000, pp.
2223–2228 vol.3.

[17] C. Lee, “A phase space spline smoother for fitting trajectories,” IEEE

Transactions on Systems, Man and Cybernetics, Part B, vol. 34, pp.
346–356, 2004.

[18] H. Mayer, I. Nagy, A. Knoll, E. Braun, R. Lange, and R. Bauern-
schmitt, “Adaptive control for human-robot skilltransfer: Trajectory
planning based on fluid dynamics,” in Proceedings International

Conference on Robotics and Automation, Rome, Italy, 2007.
[19] E. Drumwright, O. Jenkins, and M. Matarić, “Exemplar-based primi-

tives for humanoid movement classification and control,” in Proceed-

ings International Conference on Robotics and Automation, vol. 1,
2004, pp. 140–145.

[20] N. Delson and H. West, “Robot programming by human demonstra-
tion: adaptation and inconsistency in constrained motion,” in Proceed-

ings International Conference on Robotics and Automation, vol. 1,
1996, pp. 30–36.

[21] ——, “Robot programming by human demonstration: the use of hu-
man variation in identifying obstacle free trajectories,” in Proceedings

International Conference on Robotics and Automation, vol. 1, 1994,
pp. 564–571.

[22] S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining PCA, ICA and HMM,”
in Proceedings International Conference on Machine Learning, 2005,
pp. 105–112.

[23] O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” in Proceedings International

Conference on Machine Learning. Banff, Alberta, Canada: ACM
Press, 2004, p. 56.

[24] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, Dec. 2000.

[25] A. Tsoli and O. C. Jenkins, “Neighborhood denoising for learning
high-dimensional grasping manifolds,” in International Conference on

Intelligent Robots and Systems, Nice, France, Sep 2008, pp. 3680–
3685.

[26] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, 1999.

[27] J. R. Munkres, Topology. Upper Saddle River, NJ: Prentice Hall,
2000.

[28] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proceedings Conference on Computer Vision and Pattern Recognition

(CVPR). Washington, DC, USA: IEEE Computer Society, 1997.


