
Combining Cost and Reliability for Rough Terrain Navigation

Jun-young Kwak, Mihail Pivtoraiko, and Reid Simmons
The Robotics Institute, Carnegie Mellon University

{junyoung.kwak, mihail, reids}@cs.cmu.edu

Abstract

This paper presents an improved method for

planetary rover path planning in very rough terrain,
based on the particle-based Rapidly-exploring
Random Tree (pRRT) algorithm. It inherits the benefits
of pRRT, an improvement over the conventional RRT
algorithm that explicitly considers uncertainty in
sensing, modeling, and actuation by treating each
addition to the tree as a stochastic process. Although
pRRT is well-suited to planning under uncertainty, it
has limitations in minimizing the cost of path plans.
Our approach addresses these limitations by
considering the relevant cost functions explicitly. Such
cost functions depend on the application and can
include time or distance of traversal, and energy
consumption of the rover. The paper demonstrates the
planner performance using a specific cost function
defined in terms of the energy expenditure. The
improved pRRT algorithm has been experimentally
validated in simulation, and it has been shown to
produce lower-cost plans than the standard pRRT
algorithm. The proposed approach is likely to benefit
the present and future space missions as an onboard
motion planner and as a ground-based tool for plan
validation.

1. Introduction

Over the past few years, experience with rover
navigation on Mars has shown that a number of
significant challenges still exist with rover autonomy.
Generating correct and safe rover motions is
complicated by a number of challenges, including:
1. environment constraints (cluttered obstacles, high

wheel slip),
2. uncertainty of information about the environment,
3. rover constraints (kinematics and dynamics

constraints),
4. resource constraints (energy expenditure).

Motion planning under partially-known, yet certain
environment constraints has received considerable
attention in robotics research, and some standard
solutions exist [4] [6]. Planning under nonholonomic
constraints also has been studied extensively [5].
However, planning with uncertainty is still among the
most active areas of inquiry [7] [8] [9].

The particle-based Rapidly-exploring Random Tree
(pRRT) algorithm has been shown to be effective at
solving planning problems under uncertainty [1] [3]. It
extends the RRT algorithm and inherits its capability
to satisfy challenges 1 and 3 above. In addition, pRRT
is also capable of computing the likelihood of
successful execution of motion plans (i.e. probability
of achieving the goal by following the plan). It selects
a plan that is likely to succeed as the solution, thereby
satisfying the challenge 2. However, it is not designed
to consider any other performance measures. For
example, in selecting a motion plan, it may be
important to evaluate a trade-off between the
likelihood of reaching the goal and a desired cost
function. Examples of application-dependent motion
costs could be energy expenditure, time or distance of
traversal and others, including any combination of the
above.

With respect to applying pRRT to rover motion
planning, this can be an important limitation.
Specifically, it leaves the challenge 4 unmet. The
approach presented here addresses this limitation by
considering arbitrary cost functions explicitly. The
proposed motion planner therefore represents an
incremental improvement over state of the art. It
provides the complete capability of pRRT, while also
considering a representation of the path’s cost. Thus,
the proposed method is a promising solution for rover
motion planning, since it satisfies all important
challenges of the problem, outlined above.

The proposed algorithm has been experimentally
validated in simulation. The results confirm that it
becomes possible to leverage a trade-off between the
cost function of choice and the likelihood of achieving
the goal. This property is an important advantage over

the state of the art and is likely to enable
unprecedented rover autonomy in planetary terrain.

2. Related work

Previous work in path planning has taken several
approaches to planning with uncertainty. One of the
most common approaches is to ensure proper operation
in the worst case scenario. For example, if uncertainty
is considered only in actuation, but not in sensing or
modeling, Hait and Sim´eon [7] consider the range of
possible rover poses and test for impact with the
terrain. Related work by Esposito in the domain of
plan validation [8] samples several possible values of
the uncertain parameter from a given distribution and
repeats planning for each value. In the more general
case, approaches such as Iagnemma’s [9] computes the
cost metric of traversing a particular region based on
the worst case estimate of uncertainty.

Most of previous path planning works assume that
the environment is completely known before the robot
begins its traverse (see Lavalle [10]). The optimal
algorithms in this search a state space (e.g., visibility
graph, grid cells) using the distance transform [13] or
heuristics [14] to find the lowest cost path from the
robot’s start state to the goal state. Cost can be defined
to be distance travelled, energy expended, time
exposed to danger, etc.

There was also an approach to use the adaptive path
planning algorithm based on the cost function.
Cunningham and Roberts [15] present the way for
cooperating unmanned air vehicles. A key requirement
of the algorithm is that it adapts the subnets (and paths
through the subnets) in response to the change of
environment. More complex situations can be derived
as combinations of several factors around robots. In
this algorithm, subnet and path adaptation is driven by
a global cost function that essentially shifts sensors
into and out of subnets to reach a minimum cost.

3. The particle-based Rapidly-exploring
Random Tree (pRRT) algorithm

In this work, we use the particle RRT (pRRT)
algorithm [1] [3] which is an extension to the Rapidly-
exploring Random Tree (RRT) algorithm introduced
by Lavalle and Kuffner [10]. RRT is a widely-used
algorithm for motion planning in high-dimensional
spaces with kinodynamic constraints. Each iteration of
the algorithm, as depicted in figure 3(a), begins with a
tree of states that the rover can reach. At the first step,
this tree only consists of the initial state of the rover. A
new state xrand is chosen stochastically from the state

space, and the nearest node xbest in the tree is
determined. An action is estimated to reach xrand from
xbest, and the action is executed. The resulting state xnew
is added to the tree. The planner may compute the
forward simulation of the action with any level of
fidelity appropriate to the task at hand. It is not
necessary for the final state xnew to coincide with xrand,
so it is often preferable to select the action using
simple inverse kinematics, but simulate the result of
the action using more accurate dynamic models.

The pRRT algorithm selects a pair of xrand and xbest
as the same way of RRT. However, the selected xbest is
evaluated based on the quality value, the probability of
reaching xbest from the root of the tree. A random value,
r is drawn from a uniform distribution between 0 and 1,
and if xbest.quality > r, the pair of points xrand and xbest is
accepted and an extension is attempted. Otherwise, a
new pair of points is chosen. This procedure is called a
rejection test. The detailed procedure is listed in figure
1. The extension introduced by pRRT, as shown in
figure 3(b), produces distributions of states, rather than
single states, at each node of the tree. The distributions
are nonparametric, and are derived from the
uncertainty specified as input to the algorithm, and the
forward simulation process itself. Specifically, they
use a set of discrete particles to estimate the
distribution at each node. For each extension added to
the tree, several particles are computed under uncertain
environment. To compute a single particle, one particle
from the node is chosen as the start state, and a value is
drawn from the prior distribution over the uncertain
parameter (in this case, terrain friction). Simulations of
the same action under different values for friction will
result in different final states for the rover. In this
procedure, CM Lab’s Vortex Simulator [16] is used to
get particles under the uncertain factor with a specific
vehicle model (See figure 2). After simulating several
times in this manner, the resulting particles are
clustered into one or more nodes, which are added to
the tree with the same parent. The clustering is used to
separate qualitatively different particles into different

Figure 1. The pRRT algorithm - SELECT_NODE

nodes. This procedure is accomplished using a
hierarchical clustering tree [11] with a weighted
Euclidean distance metric to determine the difference
between particles. The hierarchical clustering tree
algorithm uses this metric to iteratively agglomerate
the particles and clusters separated by the shortest
distance.

In general, building a planning tree while
accounting for uncertainty should result in nodes
whose variance grows with the depth in the tree.
However, since the clustering step permits a single
extension to be broken into more than one node, the
variance is split as well. In addition, the probability of
a single particle is associated with the prior likelihood
of the sampled value of friction used to produce it.
Since the prior over the uncertain parameter can have
an arbitrary probability distribution function and nodes
may contain different numbers of particles, some
nodes will contain more probability mass than others.
Nodes which combine both low variance and high
probability are good candidates for path planning,
because the rover is expected to be able to reach them
accurately despite the uncertainty. Consequently, such
a path is executed with greater accuracy by the rover.
Thus, as the planning tree is built, there is a bias
towards extending new leaves from such high-
probability paths. This bias is implemented using a
selection mechanism similar to that introduced by
Urmson in [2].

Figure 2. The Vortex simulator

Figure 3. The RRT & pRRT algorithms

4. Enhancing pRRT with cost functions

The advantage of the proposed approach over
pRRT lies in a more informed method of growing the
search tree. It is guided by a cost function that
represents the true cost of moving the rover from one
state to another. Here we extend the pRRT algorithm
to utilize the additional information, provided by the
cost function. First, we will describe the mechanism
for fusing the cost function estimates with the
probability of successful execution of the plan.
Afterwards, we will discuss the details of extending
the pRRT algorithm to accommodate the new
methodology for guiding the tree growth.

4.1. Weighted reward function

In order to facilitate the fusion of the cost function
with the probability of successful plan execution, we
use the notion of reward. It is loosely defined as the
inverse of the cost. The mapping of tree nodes to the
value of their exploration in pRRT search is referred to
as a reward function. This function guides the growth
of the tree toward the goal. The nodes that have a
higher value of the reward function represent a more
promising direction of search. Thus, the quality of the
pRRT solution is more likely to be higher if the
algorithm grows the tree toward nodes with the highest
reward.

Since here we propose combining two reward
functions – the conventional probability of successful
execution and cost function of choice –, we require a
methodology for fusing them, such that the resulting
reward function still satisfies the requirements of

pRRT. We propose a fusing technique that is loosely
related to weighted averaging, hence the resulting
function is referred to as a weighted reward function.
The technique we developed was inspired by [12] and
Urmson’s hRRT technique for heuristically biasing
RRT growth [2]. The weighted reward function of a
node n, denoted as W[R(n)], is defined in the following
equation.

In the equation, ps(n) is the probability of reaching a

state n by following the plan from the starting point.
The variable pnorm(n) is the normalized ps(n) by the
path length, d. Tm is the minimum probability of all
leaf nodes of the search tree. Pq(n) is a quality value of
a state n; it is normalized to ensure that the weight falls
within the range [0, 1]. C(n) is the total accumulated
cost function for a state n from the starting point.

The rationale for normalizing pnorm(n) is as follows.
We found that the probability of reaching nodes of the
tree drops quickly with path length. This causes the
algorithm to favor making extensions from nodes near
the root, even when reasonably likely nodes exist
closer to the goal. Hence, the path probability pnorm(n)
is normalized using the path length in order to
encourage more extensions from nodes farther from
the root.

The definition for W[R(n)] includes an exponential
function in order to constrain its values between 0 and
1. Thus, the weighted reward value will also reside
within [0, 1]. This might bring several advantages. For
example, we can set a threshold value for a rejection
test in the pRRT algorithm because we know the scope
of the value explicitly. Also, because we use
accumulated cost, C(n) increases very quickly. By
utilizing the exponential function, large differences in
cost are translated to small differences in state space.
However, the reduction of a large cost difference via
the exponential may make it difficult to compare costs
of nodes. This is addressed with the relevant parameter
α, a reward decay factor. It represents the degree of
importance of reaching the goal quickly and is
problem-specific. Section 5 briefly discusses choosing
the value of this parameter, as well as the sensitivity of
the present method to its value.

4.2. Extending pRRT with weighted reward
function

Given a weighted reward function for guiding the
growth of the tree, we extend the pRRT algorithm to
accommodate it. Through this extension we achieve
our goal of enabling the pRRT planner to incorporate
arbitrary cost functions in its search. Relatively small
changes to pRRT are required: only one routine of the
algorithm, SELECT_NODE, needs to be modified.

There are two leading approaches for extending the
pRRT. Below we describe the details of both, specify
their re-designed SELECT_NODE routines, and
conclude with outlining their benefits and drawbacks.

4.1.1. Algorithm 1. In this approach, we select the
new node by picking a point xrand stochastically and
selecting the nearest neighbor xbest of the point xrand.
For the rejection test, we use the weighted reward
function to evaluate the selected pair (xrand, xbest). The
algorithm is listed in figure 4.

4.1.2. Algorithm 2. In this version, we pick a point
xrand stochastically and select a node xbest with the
maximum reward. For the rejection test, we use the
weighted reward to evaluate the selected pair
(xrand, xbest). The algorithm is listed in figure 5.

The difference between Algorithms 1 and 2 is in
selecting the point xbest. After picking a point xrand
stochastically, Algorithm 1 selects the nearest neighbor
xbest of xrand. On the other hand, Algorithm 2 selects
xbest with the maximum reward. To calculate the
maximum reward value, we combine a normalized
distance and a weighted reward with a relevant weight
factor, wf. Because Algorithm 1 selects a pair (xrand,
xbest) based on the distance and does a rejection test
with a weighted reward, we can get a pair with a
reasonably good weighted reward on average.
However, Algorithm 1 considers a weighted reward
after selecting a pair, so we cannot guarantee the

Figure 4. Algorithm 1

selected pair has the highest reward, and if a threshold
value is too high, it might take a long time to select a
pair. Algorithm 2 is considering the distance and the
weighted reward together, so we can select a pair
based on our needs which are problem-specific.

The choice of 1 for wf would result in considering
only the distance in selecting the point xbest. This would
be identical to Algorithm 1. On the other hand, if we
choose 0 for wf, we would only use the weighted
reward to select xbest. Some guidelines for choosing the
value of wf, as well as sensitivity to this parameter, are
offered in Section 5.

5. Experimental results

In this section, we demonstrate the performance of
the proposed algorithms using the specific cost
function. Cost may be computed as a combination of
several factors such as distance traveled, energy
consumed, etc. In this experiment, cost is a synonym
for energy consumption, so the cost function becomes:

Figure 5. Algorithm 2

where τit and ωi

t are torque value and angular
velocity for wheeli at time step t. k is the number of
wheels and m is the number of time steps. np is a parent
node of a state n. In the pRRT algorithm, each node is
composed of multiple particles, and thus the cost of a
node means the average cost of the particles.

For the simulation, the challenge is to find the value
for wf that gives the optimal values for the following
variables: planning time and total cost. The minor
concern is to find the value for α since it does not
affect the results of two algorithms relative to the other
parameter (i.e. wf). Specifically we picked α = 0.005,
which has been shown to be appropriate for both
algorithms in the environment. α is used as a scale
factor to get the reasonable range of reward value. Of
course we cannot say this value is the optimal one in
this case. However, once we can compare each
algorithm’s performance based on cost and reward
values with the selected α value, optimality is not
necessarily required. In addition, simulation results
were not sensitive to α value in the experiments. We
changed α value from 0.001 to 0.1, but there were no
significant effects in the results. For Algorithm 2, in
order to acquire the appropriate wf value, 300 iterations
were repeatedly applied to both algorithms with a
given terrain map. Based on the experimental results in
table 1, we picked wf = 0.7 which gives the best result

It is worth noting the benefits and drawbacks of the
proposed algorithms. In Algorithm 2, we perform a
rejection test with a weighted reward, even though we
have already considered that value when we calculated
the maximum reward. We take into account the
weighted reward again in the computation of the
maximum reward which gives more weight to a
distance metric for choosing wf. If the pair is selected
based on the maximum reward, it would likely have a
higher weighted reward. However, the best pair in
terms of the maximum reward does not necessarily
mean the pair having a high weighted reward.
Therefore, with a rejection test using weighted reward,
it would likely to get the better plan having higher
weighted reward value than the case without a
rejection test. In addition, since the weighted reward
for each node has been already computed at the
previous step, this rejection test does not require any
additional computational resources. Also, because
Algorithm 2 considers the maximum reward at every
step, it is more likely to select a better pair even though
the computation in terms of memory is more expensive
than Algorithm 1.

Table 1. Picking wf

wf Planning time (s) Total cost C(n)

1.0 124.39 15.64
0.9 117.26 15.45
0.7 103.88 15.01
0.5 153.71 15.23
0.3 231.75 14.98
0.1 352.35 14.87
0.01

 n/a n/a

1 With wf = 0.0, the procedure of the proposed algorithms is
terminated by the maximum iteration number of pRRT before getting
a path reaching to the goal position.

in terms of planning time and total cost. Of course, wf
depends on the needs which are problem-specific or
evaluation criteria. Therefore the selected wf value is
not generally optimal. However, we can at least get
some ideas to select the relevant weight factor for each
case from values in table 1 and Algorithm 2 described
in figure 5.

With these two selected parameter values and a
given terrain map, the procedure of each algorithm was
iterated for 150 times to get average path length,
planning time, total cost, and relative end-point errors.
As a result, the three patterns as depicted in figure 6
were produced. The path of pattern 1 has the shortest
length, but it requires the highest overall cost to get the
goal position because it needs more energy when it
climbs over the obstacle. The path of pattern 2 and 3
goes around the obstacles, and pattern 3 has the
longest length among three cases. We show the
detailed results in table 2 for each case.

When we generated the plan with the original pRRT
algorithm, over 90% of paths showed pattern 1.
Because pRRT considers only a distance metric to
select a pair and just perform a rejection test based on
a quality value, average planning time showed the best
result among three algorithms. However, pRRT was
the worst in terms of total cost. On the other hand,
when we applied Algorithm 1 and 2, the planner
generated paths that avoid the obstacle like pattern 2
and 3 with about 95%. Algorithm 1 and 2 generated
the path with lower total cost than the path generated
by the original pRRT because less energy is needed
along paths of pattern 2 and 3. The interesting thing
here is even though the total cost of pattern 3 is much
higher than pattern 2, pattern 3 is chosen with
relatively high frequency, about 30%, in Algorithm 1
and 2. This is because the proposed algorithms give
still more weight to the distance metric for their
rejection tests. As a result, if a random point is selected
on the right side of the space, a node relatively close to
the random point and having reasonable weighted
reward would likely be selected.

For the planning time, as we expected, Algorithm 1
took the longest time on average because it considers
the distance metric like pRRT, and this procedure is
iterated until the pair with a reasonable weighted
reward is selected to pass a rejection test. In fact, for
all three algorithms, all nodes in the tree need to be
investigated to select xbest to extend, and thus there is
no significant difference in time when they select the
pair at each step. However, after the pair (xrand, xbest) is
selected, when the rejection test is applied to the
chosen pair, it is iterated until the pair has a reasonably
good value in terms of a given evaluation criteria. This

Table 2. Detailed results for each algorithm
 pRRT Alg1 Alg2

Pattern 1

Frequency (%) 90.67 4.67 5.33
Path length (m) 9.58 9.62 9.81
Planning time (s) 85.25 90.52 87.33
Total cost C(n) 22.52 23.03 24.17
Relative end-point
error (m) 0.053 0.076 0.058

Pattern 2

Frequency (%) 6.67 61.33 69.34
Path length (m) 11.32 11.52 11.45
Planning time (s) 112.23 122.69 115.53
Total cost C(n) 12.04 12.47 12.36
Relative end-point
error (m) 0.061 0.097 0.064

Pattern 3

Frequency (%) 2.66 34.00 25.33
Path length (m) 18.52 20.21 18.25
Planning time (s) 132.53 152.93 130.21
Total cost C(n) 18.04 20.05 17.53
Relative end-point
error (m) 0.084 0.112 0.81

Average

Path length (m) 9.93 14.39 13.09
Planning time (s) 88.31 131.47 117.75
Total cost C(n) 21.70 15.54 14.29
Relative end-point
error (m) 0.054 0.101 0.068

Figure 6. Three patterns of generated paths with

each algorithm

procedure mainly affects overall planning time, and
that’s why pRRT and Algorithm 2 have nearly
identical planning time for the same pattern, even
though average planning time between pRRT and
Algorithm 2 is fairly different because of the frequency
of patterns. In cost criteria, Algorithm 2 showed the
best result because it considers the weighted reward at
every step when it selects the pair.

The reason why we mainly get the paths of pattern
2 or 3 with the proposed algorithms can be explained
more clearly in the specific case. In figure 7, nodes
inside a dotted circle were not extended more because
those nodes already have fairly high overall cost.
Specifically, even though those nodes are selected,

Figure 7. Nodes with higher total cost: These nodes

are not selected by a rejection test.

they are rejected by SELECT_NODE procedure shown
in the previous section. Therefore, the proposed
algorithms select nodes which are not resided on the
hill to extend the tree, and thus they produce the paths
going around the obstacle.

According to the results in table 2, generating a plan
based on the aggregated cost function slightly
deteriorated the end-point accuracy of the plan, but the
plan has lower overall cost. These results show a trade-
off between different metrics of success, specifically,
accuracy, planning time, path length and energy
consumption.

6. Conclusions & future work

This paper presented an improved method for
planetary rover path planning in rough terrain, based
on the pRRT algorithm. Our contribution enables
adding arbitrary cost functions to the pRRT algorithm,
in order to allow the resulting planner to consider a
trade-off between different metrics of success, such as
accuracy, path length, and energy consumption. The
method of incorporating the cost functions in pRRT
has been experimentally validated in simulation.

Future work includes investigating additional cost
criteria and methods for integrating them in the

proposed algorithm. We would also like to undertake
field validation of the algorithm, as well as evaluate its
use for future space missions as an onboard rover
motion planner and as a ground-based tool for plan
validation.

Acknowledgments

This work has been funded by NASA under grant
number NASA-03-OSS-01. We thank Nik and other
colleagues at CMU and the JPL Robotics section for
their support in developing and testing our algorithm.

References

[1] N. A. Melchior and R. Simmons, “Particle RRT for path
planning with uncertainty,” in Proceedings of IEEE
International Conference on Robotics and Automation, April
2007.

[2] C. Urmson and R. Simmons, “Approaches for
heuristically biasing RRT growth,” in IEEE/RSJ IROS 2003,
October 2003.

[3] N. A. Melchior, J. Kwak and R. Simmons, “Particle RRT
for Path Planning in very rough terrain,” NASA Science
Technology Conference 2007 (NSTC 2007), 2007

[4] J. Carsten, A. Rankin, D. Ferguson and A. Stentz,
“Global Path Planning On-board the Mars Exploration
Rovers”, in Proc. of the IEEE Aerospace Conference, 2007.

[5] S. M. LaValle, Planning Algorithms, Cambridge
University Press, 2006.

[6] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz and S.
Thrun, “Anytime Dynamic A*: an Anytime, Replanning
Algorithm”, in Proc. of the Int. Conf. on Automated Planning
and Scheduling, 2005.

[7] A. Hait and T. Sim´eon, “Motion planning on rough
terrain for an articulated vehicle in presence of
uncertainties,” IEEE/RSJ International Symposium on
Intelligent Robots and Systems, pp. 1126–1133, 1996.

[8] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs
for validating hybrid robotic control systems,” International
Workshop on the Algorithmic Foundations of Robotics, July
2004.

[9] K. Iagnemma, F. Genot, and S. Dubowsky, “Rapid
physics-based rough-terrain rover planning with sensor and
control uncertainty,” in Proceedings of IEEE International
Conference on Robotics and Automation, Detroit, MI, 1999,
pp. 2286–2291.

[10] S. M. Lavalle and J. J. Kuffner, “Randomized
kinodynamic planning,” International Journal of Robotics
Research, vol. 20, no. 5, pp. 378–400, May 2001.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data
clustering: a review,” ACM Computing Surveys, vol. 31, no.
3, pp. 264-323, 1999.

[12] L. Lita, J. Schulte and S. Thrun, “A System for Multi-
Agent Coordination in Uncertain Environments,”
Proceedings of the fifth international conference on
Autonomous agents, Montreal, Quebec, Canada, 2001.

[13] Jarvis, R. A., “Collision-Free Trajectory Planning Using
the Distance Transforms,” Mechanical Engineering Trans. of

the Institution of Engineers, Australia, Vol. ME10, No. 3,
September, 1985.

[14] Nilsson, N. J., Principles of Artificial Intelligence, Tioga
Publishing Company, 1980.

[15] C. Cunningham and R. Roberts, “An Adaptive Path
Planning Algorithm for Cooperating Unmanned Air
Vehicles,” IEEE International Conference on Robotics and
Automation, Seoul, Korea, May 2001.

[16] CMLab Vortex: http://www.cm-
labs.com/products/vortex/

	1. Introduction
	2. Related work
	3. The particle-based Rapidly-exploring Random Tree (pRRT) algorithm
	4. Enhancing pRRT with cost functions
	4.1. Weighted reward function
	4.2. Extending pRRT with weighted reward function

	5. Experimental results
	6. Conclusions & future work
	Acknowledgments
	References

