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Abstract—We present the In-Context application for smart-
phones, which combines signal processing, active learning, and
reinforcement learning to autonomously create a personalized
model of interruptibility for incoming phone calls. We empirically
evaluate the system, and show that we can obtain an average of
96.12% classification accuracy when predicting interruptibility
after a week of training. In contrast to previous work, we
leverage density-weighted uncertainty sampling combined with a
reinforcement learning framework applied to passively collected
data to achieve comparable or superior classification accuracy
using many fewer queries issued to the user.

I. INTRODUCTION

With the proliferation of mobile devices, interruptibility has
become a defining problem. Users often forget to change the
settings on their mobile devices throughout the day, which
results in inappropriate interruptions or important notifications
being missed [12]. However, modern mobile devices are being
outfitted with broad sensing suites and relatively powerful
computational capabilities, giving those devices the ability to
monitor and adapt to changing social contexts. We introduce
the In-Context smartphone application, which uses a combi-
nation of signal processing, active learning, and supervised
machine learning to create a personalized policy for changing
a user’s ringtone autonomously. This application leverages
a smartphone’s GPS, accelerometer, microphone, proximity
sensor, and computing power to identify similar contexts and
act according to the user’s observed historical preferences. The
techniques being used in this application could be applied in
any setting in which we wish to personalize an instrumented
system—for instance on a sensor-equipped power-wheelchair,
we may wish to generate customized reminders for the user
to conduct pressure relief exercises.

There are several practical and theoretical challenges in-
volved in building such a system. On a practical level, the
system should be able to operate using only those sensors
found in a standard touch-screen smartphone, without requir-
ing the user to wear additional instrumentation. Furthermore,
the power consumption of the system must be such that the
user can continue to use his or her phone throughout the day.
On a theoretical level, a variety of latent variables, which
the onboard sensors cannot observe, may factor into users’
preferences in different contexts. Also, because the system
is being designed to reduce the intrusiveness of the device,
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Fig. 1. The In-Context framework

unnecessary or inappropriate queries of the user should be
avoided.

An overview of the In-Context system is shown in Figure
1. We use information extraction algorithms on the phone’s
sensor data to build a representation of the user’s current
context. In particular, we use a voice activity detection al-
gorithm on audio data and a phone posture recognition al-
gorithm on accelerometer and proximity sensor data. Given
a representation of the current context, we passively monitor
the user’s changes to their hardware ringer setting, as well as
their responses to incoming calls. We treat this behavior as a
noisy reinforcement signal, because users may have forgotten
to change their ringer setting, or they may be basing their
decision on latent variables. For users who consistently change
their ringer setting according to their preferences, the model
trained on the passively collected data is sufficient. However,
we also allow the system to use an active learning framework
to select contexts in which to query the user about their
true preferences in cases where the system has significant
uncertainty about the correct setting in the current context.

Most previous attempts to determine user interruptibility,
in mobile as well as desktop applications, have relied on
active user input to determine their preferences [1], [7], [19].
Some of this work has explicitly considered the user’s current
interruptibility when deciding whether to issue prompts for
input [14], but all of these systems perform poorly with users
who are often unwilling or unable to respond to queries.

Our system expands on previous work in two central ways.



First, we allow the system to learn about users by passively
observing their day-to-day behavior with their phone, such as
when they change the ringer setting or respond to incoming
calls. This allows us to learn an effective model using either a
small number of questions or no questions at all. Secondly,
we leverage a new metric for actively learning, one not
previously used in the application of interruptibility. While
most existing systems have issued questions to the user based
on uncertainty sampling [11], we propose the use of density-
weighted uncertainty sampling [17], which considers how
representative the current context is of other contexts in the
user’s data-set, in addition to the system’s uncertainty about
the current user preference. We discovered that this approach
allows us to attain an aggregate classifications accuracy of
96%, while requiring fewer queries of the user than previous
approaches such as uncertainty sampling.

II. RELATED WORK

Researchers have been studying interruptibility in the field
of human-computer interaction for many years. This research
was initially in the domain of desktop computers, when multi-
tasking applications began introducing irritating interruptions
to users while they worked. Early research focused on using
only information about the state of the user’s software to
determine interruptibility [15], but more recent work has
instead been using sensors to perceive the user’s environment
in order to achieve context-aware interruptibility [3], [5].

The growing popularity of mobile devices has reinvigorated
interest in determining interruptibility. Many users have a
consistent internal model of when and why they want their
mobile device turned on [20], but many of us often forget
to change the device’s settings at the appropriate times. For
many users, autonomously learning their preferences requires
the ability to sense factors in the user’s current environment.
To achieve this, many previous context-aware systems have
required users to place wearable sensors around their body [4],
[18]. However, modern smartphones, like the Apple iPhone or
Google’s Android platform, feature an array of useful sensors
that can allow us to circumvent the need for specialized
hardware. Only a small number of systems have been designed
to leverage the power of these new hardware platforms when
predicting interruptibility [14].

Nearly all previous work in the field of interruptibility
has relied on actively asking the user questions about their
preferences in different contexts [6], [8]. Unfortunately, this
approach leads to scenarios where the system interrupts the
user at inopportune moments in order to issue a query about
their preferences in the current context. Some systems have
alleviated this drawback somewhat by introducing a decision-
theoretic component that allows the system to ask questions
only when the cost of interruption is low [14]. However, when
there is a high cost of asking questions, or when the user
ignores the queries, many of these system fail to perform better
than random guessing.

Fig. 2. User interface for data collection

III. DATASET

Data was collected over a seven-day period from five
volunteers using iPhone brand smartphones. The data collected
included readings from the phone’s 3-axis accelerometer, GPS
unit, microphone, proximity sensor, as well as user activity
and responses to incoming phone calls. The state of the user’s
hardware ringer switch (on or off) was also collected with
every sample. Data was read from the sensors for only a ten-
second period once every ten minutes, in order to preserve
the phone’s battery life. Under these conditions, we estimated
that our system is able to run for 23 hours continuously on
an iPhone 4 handset, or 19 hours continuously on an iPhone
3GS. For purposes of system evaluation, each user was also
queried approximately once every two hours to provide their
true preference for the ringer setting in the current context. In
addition, each user was also permitted to provide their current
preference to the system at any time, which would postpone
the next prompt for user input by two hours. The graphical
user interface is shown in Figure 2.

After the raw data was collected, it was passed through
information extraction algorithms on board the smartphone,
and the output of these algorithms was stored. The details
of the information extraction are provided in section IV. In
particular, we represented a user’s context using seven core
pieces of information, described in Table I. We have done our
best to minimize the invasiveness of the system on the user’s
privacy by encrypting or deleting data as much as possible.
Although some private information is collected, previous work
suggests that most users are willing to divulge some private
information in return for services with high utility [19].

There are other modes of data which could be collected on a
smartphone but were not used in this study. For instance, only
one of our users reported keeping their smartphone calendar
up-to-date, so calendar events were not collected in our dataset.
Additionally, we did not record the identity of incoming callers
at the request of several of our study participants.

IV. SYSTEM OVERVIEW

This section describes the primary components of the In-
Context system. The first subsections present the information
extraction algorithms for phone posture recognition and voice
activity detection, as well as the smoothing routine applied



Context feature Details
Phone posture A number in the set {0, 1, 2}

indicating if the phone is
0: Resting on table
1: In user’s hand

2: In pocket or bag
Voice Activity A bit indicated the presence of human speech

Sound level A number in the set {0, 1, 2} indicating
if the sound level is quiet, average, or high.

Hour An integer in 0-23 indicating the hour of the day
Weekday An integer in 1-7 indicating the day of the week
Location The latitude and longitude of the current location.

These numbers are hashed using a secret key
before being recorded to preserve privacy.

Ringer switch The current setting of the hardware ringer switch.

TABLE I
THE REPRESENTATION OF A USER’S CONTEXT

to the output of both. Next, we describe the techniques we
evaluated for predicting a user’s preferences using only the
passively collected reinforcement signal (changes to ringer
settings and responses to phone calls). Finally, we describe
our use of density-weighted uncertainty sampling to select the
contexts in which we wish to issue active queries for the user’s
preferences.

A. Phone Posture Recognition

Previous work has shown that having knowledge of the
user’s physical activities can be used to help determine inter-
ruptability [4]. However, accurately classifying a user’s activity
generally requires one or more accelerometers placed at known
locations around a user’s body. With a mobile phone, a user
may carry the phone in their pocket, purse, or on their belt, so
we do not have a known reference point from which to conduct
activity recognition. Instead, we simplify the problem to trying
to estimate the current physical posture of the device itself. In
this task, we wish to determine if the phone is resting on a flat
surface, if it is being actively held by the user, or if it is placed
in a pocket, purse, backpack, etc. To address this problem, we
collected labeled data from these three classes, using the 3-
axis accelerometer and the proximity sensor of the phone. The
data was divided into overlapping half-second frames, with the
sample mean and variance of the accelerometer axes recorded
for each frame. The number of times that the proximity sensor
was triggered over the half-second was also recorded. A linear
support vector machine was then trained to differentiate these
classes, attaining 91.4% accuracy over 89 test samples.

B. Voice Activity Detection

Audio data was collected from the smartphone devices at a
sample rate of 8192Hz. Ten seconds of audio was recorded,
and this signal was broken into 20 half-second samples. For
each of these samples, a Fast Fourier Transform is used to
extract 16 features, presented in Table II. We empirically
compared multiple classifiers for use in the voice activity
detection task. A support vector machine with a linear kernel
and a Gaussian mixture model were both trained on labeled
audio samples to differentiate audio samples containing human

# Feature Description
1 Fourier mean The sample mean of the magnitudes of

all Fourier coefficients in the sample.
2 Fourier variance The sample variance of the magnitudes

of all the Fourier coefficients.
3 Total signal power The sum of the squared magnitudes

of all the Fourier coefficients
4 Mid-range power The sum of the squared magnitudes

of the Fourier coefficients in the
250-600Hz range of the spectrum.

5 Ratio The ratio of the mid-range power
over the total signal power.

6 Zero crossings The number of zero crossings in the
Linear PCM encoding of the audio signal

7-16 Band power 9 features representing the signal power in
100Hz bands from 1 to 1000Hz. The bands

are 1-100Hz, 101-200Hz...901-1000Hz.

TABLE II
VOICE ACTIVITY DETECTION FEATURES

GMM SVM
In pocket 86.7% 91.3%

Out of pocket 90.5% 95.1%

TABLE III
VOICE ACTIVITY DETECTION ACCURACY

speech from samples that do not contain speech. Although
previous work has shown this approach to be effective at
the voice activity detection task [10], [13], there is one
complication that arises in a mobile devices application: the
device may be in a user’s pocket or handbag when the sample
is collected, resulting in a significantly dampened signal and
many false-negative predictions by the classifier. Because we
are able to detect when the phone is in a pocket using the
accelerometers and proximity sensor, we train a second speech
detection classifier for this scenario. A linear support vector
machine and Gaussian mixture model were also trained in this
instance, with a new set of trained weights to account for the
dampened signal.

The performance of the classifiers with the phone in and out
of a pocket is shown in Table III. The testing set included many
noisy audio samples without voice activity, such as music and
sounds of car traffic. Based on these results, the linear support
vector machine was selected for deployment in the In-Context
application.

C. Smoothing of Information Extraction Output

Because several seconds of data is collected whenever we
wish to sense the current context, both of the information ex-
traction algorithms actually produce a sequence of predictions
as their output. Rather than simply using the mode label of the
sequence, we instead consider the certainty of the classifiers
over the time interval. For phone posture recognition, we select
the label with the most total certainty over the sequence.
However, for the voice activity detection, we recognize that
pauses in a conversation may result in many elements of
the label sequence receiving a negative label, even though



there is actually a conversation present in the environment.
Therefore when smoothing the predictions of the voice activity
detection algorithm, rather than selecting the most confident
label, we instead require that the total confidence surpass a
certain threshold. This is formalized in equation 1, in which
the smoothed label YV AD is based on a sequence of data-
points x1...xT. For each element in the sequence, the distance
to the decision boundary of the SVM is given by w · xt. The
threshold, C, was selected to maximize classification accuracy
on a labeled parameter validation set.

YV AD = I

([
T∑
t=1

w · xt

]
≥ C

)
(1)

D. Preference Classification

This section addresses the problem of trying to predict a
user’s preferences in a given context, given their preferences
in previous contexts. We employ a variant of the nearest-
neighbors algorithm for the task of selecting ringer preferences
in different contexts. We compared this algorithm to a variety
of other classification algorithms, including a support vector
machine, decision tree, and naive Bayes algorithms, and found
that the nearest-neighbor algorithms outperformed these alter-
natives.

For the purposes of classification, we use the first six
variables presented in table I as features, and we used the
hardware ringer switch as the classification label. However,
it has been noted in previous work that many users forget to
set their ringer switch to their preferred setting [12], so the
setting of the hardware ringer switch will not always reflect
the user’s true preference. However, we believe that at the
moment a user changes their ringer setting, this setting is most
likely correct for their current context (or near future contexts).
Therefore, rather than treat the ringer switch as a strict binary
label, we think of it more as a reinforcement signal, which
degrades over time. If it has been several hours since the
user set the ringer preference, we are less confident in this
signal, whereas if the switch has just been set, we are much
more confident. To capture this behavior, equation 2 shows
the exponential decay function we use to weight the samples.
In this equation, the weight Wi of datapoint i is based on the
hardware ringer switch, Yi, of this sample, which adopts value
1 if the switch is on and -1 if the switch is off. The exponential
decay parameter λ was selected using the validation set. It was
empirically determined that small changes to these parameters
do not have a significant impact on classifier performance, so
it is not necessary to learn them for each user. The variable h
denotes the number of hours since this setting was selected,
rounded to the nearest whole number. The weight function has
an additional benefit as well. When this system is deployed on
a user’s phone, if the preference classifier is working correctly,
we envision the users no longer needing to change their ringer
setting. By ignoring the ringer setting if it has been a long
time since the user set it, we allow the system to take over
completely when the user is satisfied with the system.

Wi =
{
Yie

−h/λ : h ≤ 12
0 : h > 12

(2)

The distance function for the nearest neighbor classifier
is given in equation 3. This function describes the distance
between two recorded context Ci and Cj . For each feature
d in contexts i and j, we consider the difference |f id − f

j
d |.

For the phone posture, voice activity, weekday, and sound
level features, this is simply the Hamming distance. For
the hour feature, the difference is max(|hi − hj |, 4). For
the location feature, the difference is the indicator function,
denoting whether these two locations are within 150 meters of
one another. For each feature k, we have a distance parameter
dk, which was selected on a validation set taken from a single
user’s data.

D(Ci, Cj) =
6∑
k=1

dk|f id − f
j
d | (3)

Using the distance function given by equation 3, we have
the decision policy given in equation 4. If we wish to pre-
dict the ringer setting for a context C, we take a weighted
summation over the k contexts in the user’s history with the
smallest distance to the current context. If this summation
is non-negative, the algorithm predicts that the user would
like the ringer turned on. Otherwise the ringer is turned off.
It is worth noting that this prediction function gives us an
obvious confidence measure, namely the weighted summation
of distances to the nearest contexts. The larger the magnitude
of this summation, the more confident the algorithm is of the
prediction. Empirical results for this algorithm are given in
section V.

Pred(C) = I

([
k∑
i=1

Wi

D(C,Ci)2

]
≥ 0

)
(4)

E. Active Learning

Active learning is a framework in which a learning al-
gorithm is able to query an oracle for the label of specific
data-points. In the context of interruptibility, the user acts as
the oracle, and these queries are presented in situ so as to
benefit from the increased accuracy of experience sampling
[2]. In scenarios in which a labeling oracle is available, active
learning has been shown to greatly increase classification
accuracy [16].

Uncertainty sampling is a popular metric for selecting which
points to query the oracle about. With uncertainty sampling,
the data-points that the classification algorithm is most uncer-
tain about are selected for labeling by the active learning oracle
[11]. Entropy is a common measure of algorithm uncertainty,
as given in equation 5. A high entropy value for a data-point,
X , indicates high uncertainty.

H(X) = −
1∑
l=0

P (Y (X) = l|X) log[P (Y (X) = l|X)] (5)



While uncertainty sampling often works well, in our mobile
phone application we are likely to see many samples densely
packed around a small number of contexts (e.g. the user is at
work or at home), plus a small number of previously unknown
contexts (such as when the user tries a new restaurant).
Although the algorithm may be highly uncertain about an
unusual context, such as the restaurant, this context is not
representative of much of the user’s activity, so labeling it
will provide limited benefit.

Therefore, we propose the use of density-weighted uncer-
tainty sampling [17]. In this framework, the algorithm favors
asking the user to label data-points that the system is uncertain
about, but which are also representative of a large number of
other samples in the data. The metric function for density-
weighted uncertainty (DW) sampling is given in equation 6.
In this equation, sim(X,Y ), is a function representing how
similar two points X and Y are. For our similarity function,
we used the squared reciprocal of the distance function from
equation 3.

DW (X) = H(X)
n∑
i=1

sim(X,Xi) (6)

With density-weighted uncertainty sampling, we wish to
query the label of the sample, X , that maximizes DW (X).
This will be a sample that the algorithm is uncertain about
labeling, but which is also representative of several other data-
points in our dataset. We also use an additional heuristic, in
which the algorithm will not request the label of a point if a
similar data-point has already been labeled.

We collected 50-100 labeled data-points for each volunteer
using the In-Context system. These data-points were collected
using experience sampling, according to a uniform query
schedule. Of these labeled data-points, 50% were set aside
for testing for each user. The remaining labeled data-points
were used to evaluate the benefit of allowing the system
to actively request labels. In the next section, we compare
density-weighted uncertainty sampling to standard uncertainty
sampling, which is the technique used in most previous
interruptibility prediction systems [4], [9].

V. RESULTS

Figure 3 shows a comparison of four different classifiers
for predicting ringer preferences. We evaluated the nearest-
neighbors algorithm described in section IV-D, a support
vector machine with an RBF kernel, Naive Bayes, and a
decision tree using the information-gain metric. Additionally,
the support vector machine was evaluated on a single user
when given the raw features used for information extraction,
rather than the output of the information extraction algorithms
(voice activity detection and phone posture recognition). From
the summary of experimental results, shown in table IV, we
see that that these two information extraction algorithms have
a significant positive impact on classification accuracy.

The effects of active learning queries on classification accu-
racy are shown in figure 4. In this experiment, we compared

Features RBF SVM accuracy
With Information Extraction 6 95.3%

Without Information Extraction 33 59.3%

TABLE IV
EFFECTS OF VOICE ACTIVITY DETECTION AND PHONE POSTURE

RECOGNITION (INFORMATION EXTRACTION)
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Fig. 3. Comparison of preference classifiers

the performance of standard uncertainty sampling against
density-weighted uncertainty sampling. The classification ac-
curacy is averaged across all five users. We see that density-
weighted uncertainty sampling consistently outperforms un-
certainty sampling. When given the maximum number of
active labels (15), the classifier with density-weighted uncer-
tainty sampling attained an average classification accuracy of
96.12% ± 3.37%. This equates to approximately two queries
per day. When the number of queries is dropped to one per day,
the classification accuracy is 87.86%± 5.68%. With no active
queries at all, the classification accuracy is 81.46%± 6.20%.
However, we note that there was one user who did not set his
hardware ringer switch consistently, so the classifier with no
active labels attains only 52.0% accuracy for this user. The
other four users attain an average passive classifier accuracy
of 87.82%.

Hardware ringer switches have not previously been used to
train interruptibility classifiers, presumably because the noise
was thought to be too great. We see that, in general, this is not
the case, with four of our five users attaining a classification
accuracy above 80% with no active labels. One user attained
96.32% accuracy using no active labels. By starting with a
much higher baseline, we need fewer queries to users to push
classification accuracy above 95%. Compared to a system
that relies only on user queries [14], we are able to produce
comparable accuracy with much fewer queries, and much
greater accuracy when the user is willing to answer only a
small number of queries. We additionally see that the density-
weighted uncertainty sampling provides increased accuracy
compared to regular uncertainty sampling. Furthermore, we
conjecture that the density term will prevent the system from
issuing queries every time the user travels to a new context.
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VI. CONCLUSIONS AND FUTURE WORK

We see that both density-weighted uncertainty sampling and
reinforcement learning on passively collected data are benefi-
cial for classification accuracy. Future work should include
further evaluation on the effects of using density-weighted
uncertainty sampling in an on-line setting. We conjecture that
density-weighted uncertainty sampling could also be combined
with a decision theoretic framework to improve satisfaction as
well as classification accuracy.

The algorithms that allow us to build a context-aware system
are very general, and other applications should be explored in
the future. The authors are currently working to bring this
work into a smart-wheelchair application, in which the user
of the chair is reminded to conduct pressure relief exercises
according to a personalized model of interruptibility. Smart
homes and automobiles would be other avenues for future
research. The representation of context described in this paper
could also be transmitted off the phone to allow for use in
other devices, for instance a context-aware smartphone could
notify the user’s house that the user is on their way home,
allowing the lights and heat to be activated in preparation
for their arrival. As more of the devices in our environment
become instrumented with sensors, we believe the importance
of context-aware computing will continue to grow, as will the
pressure to minimize the annoyance of being interrupted by
those self-same devices.
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