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Summary. In recent years, multi-agent Partially Observable Markov Decision Pro-
cesses (POMDP) have emerged as a popular decision-theoretic framework for model-
ing and generating policies for the control of multi-agent teams. Teams controlled by
multi-agent POMDPs can use communication to share observations and coordinate.
Therefore, policies are needed to enable these teams to reason about communica-
tion. Previous work on generating communication policies for multi-agent POMDPs
has focused on the question of when to communicate. In this paper, we address
the question of what to communicate. We describe two paradigms for representing
limitations on communication and present an algorithm that enables multi-agent
teams to make execution-time decisions on how to effectively utilize available com-
munication resources.

1 Introduction

The problem of generating optimal policies for multi-agent POMDPs is known
to be NEXP-complete [1], making optimal policy-generation intractable.
Therefore, the bulk of recent work in this area has focused on finding heuristic
algorithms that can generate high-quality policies for multi-agent teams in a
reasonable amount of time. Team members can improve their ability and the
abilities of their teammates to reason about their environment by communi-
cating their local observations. We are interested in studying heuristics for
making execution-time communication decisions [5]. By assuming free com-
munication at policy-generation time, we can generate centralized policies for
multi-agent teams using a single-agent POMDP solver. We then reason about
communication at execution time to enable decentralized execution of these
policies.

In situations where teams have the capability to perform free and un-
limited communication, the best strategy is for each agent to broadcast all
of its observations to its teammates [4]. However, in general, communication
is not free. To use communication effectively, multi-agent teams must trade
off the benefit that can be achieved through communication with the cost of
communicating. We consider two communication paradigms:
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Fixed cost per communication instance - Every time the agents decide
to communicate, they incur a known fixed cost [4, 6, 7]. The question that
must be answered by a communication heuristic is, in essence, when to
communicate. In some previous approaches, the use of this paradigm to
focus on the question of when to communicate has justified algorithms
in which agents are required to communicate their entire observation his-
tories if they determine that communication is beneficial [8, 5]. In this
paper, we extend this paradigm to include the case in which cost scales
with the amount of information to be communicated. We model this by
assuming a fixed cost per observation transmitted.

Limited communication bandwidth - Often, communication among agents
has a strict limit on available bandwidth. For example, in robot soccer, an
attempt to communicate the complete and frequent sensory data would
easily overload the available communication resources [11]. In planetary
exploration, communication bandwidth is limited, and in a proposed com-
munication architecture, agents need to share a limited number of commu-
nication relays in order to stay in contact with their teammates [12]. Other
domains include distributed surveillance, in which the observations them-
selves are very large [13]. In general, it is possible to quantify the amount
of bandwidth available for communication between teammate agents. The
challenge, then, is to determine what to communicate so as to best use
the available bandwidth, an issue that has received little attention in the
current multi-agent POMDP literature.

Our previous work presented an algorithm for making execution-time deci-
sions about when to communicate that allows agents to successfully execute
centralized policies in a decentralized fashion [5]. In this paper, we introduce
an algorithm that builds on our previous work to address the question of what
to communicate. We show the applicability of this algorithm to both commu-
nication paradigms presented above, and verify the success of our algorithm
through experimental results. When there is a fixed communication cost per
observation, our algorithm allows agents to identify only those observations
that are relevant to team performance. In the case of bandwidth limitation,
where each agent is allowed to communicate a fixed number of observations
per unit time, our algorithm enables agents to choose those observations that
will most improve expected team reward.

Given the complexity of generating policies for multi-agent POMDPs, it is
not surprising that approaches have so far been validated on very small test
problems. The multi-agent tiger domain , introduced by Nair et al. [2], has
emerged as a commonly-used benchmark case [9, 5, 10]. It has the significant
advantage of being small enough for easy use in explanatory examples, while
still containing a challenging coordination problem. In this paper, we intro-
duce a new domain, called the Colorado/Wyoming problem. This new domain
contributes several key attributes that make it useful for evaluating communi-
cation heuristics, such as the presence of multiple different observations that
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provide varying qualities of information. Together with the multi-agent tiger
domain, it is a step toward the compilation of a comprehensive suite of bench-
mark domains for multi-agent POMDPs.

2 Multi-agent POMDPs

Several representations (e.g. DEC-POMDP [1], MTDP [4], POIPSG [3],
IPOMDP [10]) can be used to model cooperative teams of agents operat-
ing under partial observability. In this paper, we use the notation introduced
in [1], which defines a DEC-POMDP as a tuple 〈α,S,A, T , Ω,O,R〉 where α

is the number of agents in the team, S is the set of n world states, and A is
the set of m possible joint actions of the team, where each joint action, ai, is
composed of α individual actions. T , the transition function, depends on joint
actions and gives the probability associated with starting in a particular state
si and ending in a state sj after the team has executed the joint action ak.
Ω is the set of possible joint observations, where each joint observation, ωi,
is composed of α individual observations. The observation function, O, gives
the probability of observing the joint observation ωi after taking action ak

and ending in state sj. R indicates the reward that is received when the team
starts in a state si and takes the joint action ak. In this paper, we present
example domains in which the agents are identical. However, this is not a
necessary property of multi-agent POMDPs and our algorithms are equally
applicable to heterogeneous teams.

It is important to note that, although the observation function is given in
terms of joint observations, each agent observes only its own individual obser-
vations. Additionally, when executing a policy, the individual agents receive
no explicit notification of the actions that were taken by their teammates.
Multi-agent POMDPs are challenging to solve because, to accurately model
the state and choose a policy, each agent must reason not only over uncertainty
in the environment, but also about the possible behaviors of its teammates.

There are several classes of observability possible in cooperative multi-
agent teams. In this paper, we examine domains with collective partial ob-
servability, meaning that even if every agent on the team had access to the
local observations of all of its teammates, this union of team information
may still be insufficient to uniquely identify the world state. The algorithms
that we discuss in this work are equally applicable to domains with collective
observability, sometimes called DEC-MDP, in which the union of individual
observations is sufficient to uniquely determine the team’s state.

3 DEC-COMM: Deciding When to Communicate

The problem of generating optimal policies for multi-agent POMDPs is known
to be NEXP-complete [1], making exact solutions unfeasible and necessitating
the use of heuristics. Our previous work [5] developed an approach that ex-
ploits a known property of multi-agent POMDPs, namely that the presence of
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free and unrestricted communication can be used to transform a multi-agent
POMDP into a centralized, or single-agent, POMDP [4], a problem that has
a smaller complexity of PSPACE [14]. The approach of our previous work
is to assume, at policy-generation time, that communication is free, allowing
agents to know the local observations of their teammates at every timestep.
This enables us to write the multi-agent POMDP as a single-agent POMDP.
We are then able to use any single-agent POMDP solver (e.g. [15]) to generate
a centralized policy for the team.

The challenge, then, is to enable agents to execute the centralized policy
in a decentralized manner despite the fact that, in general, communication
is not free. Because the transition and observation functions of a multi-agent
POMDP depend on the joint action, an individual member of the team cannot
compute belief independently. To correctly execute a centralized policy, the
agents must form the same approximation of joint belief, and each agent must
ensure that it is selecting the same joint action as its teammates. This requires
agents to model joint belief based only on information that is globally available
to all of the teammates.

Our approach is to have each agent calculate Lt, the distribution of possi-
ble joint beliefs of the team. Each element, Lt

i, is a possible joint observation
history. Lt

i is defined as the tuple 〈bt, pt, ωt〉, where ω
t is the joint observation

history leading to Lt
i, bt is the joint belief given that history, and pt is the prob-

ability of the team observing that history. [5] provides a detailed algorithm,
growTree, that describes how this tree is calculated. The important detail is
that the contents of this tree do not depend on any agent’s local observations.
Therefore, all the agents can compute identical trees independently.

Agents can calculate a joint action over the distribution of possible joint
beliefs and be assured that the joint action selected is identical across team-
mates. This action selection can by done by means of any function that op-
erates over the leaves in Lt. We introduced one possible Evaluate function,
Q-POMDP, in [5]. However, since agents do not use their local observations
to refine their beliefs about the state of the world, the selected action is unaf-
fected by the agents’ true experiences. Communication provides a means for
agents to share their local observations with their teammates, enabling the
team to use those observations when making decisions.

Since communication is not free, we want to reason about when to commu-
nicate. The Dec-Comm algorithm, presented in detail in [5], enables agents to
make execution-time decisions about when to communicate their observations
to teammates. An agent can hypothesize about the joint action that would
be selected by the team if it chose to communicate by pruning Lt of all of the
observation histories that are inconsistent with its own local observations. It
compares the expected reward of this new joint action, aC , with the expected
reward of the joint action that would be chosen if it does not communicate,
aNC . If the change in expected reward is above some threshold ε (the cost
of communication), the agent broadcasts its observation history to its team-
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mates, who then prune their own Lt to be consistent with the communicated
observations.

4 Choosing What to Communicate

The Dec-Comm algorithm described above answers the question of when
to communicate, making run-time communication decisions in the context of
decentralized execution of a centralized policy. However, it does not address
the question of what to communicate. Each time an agent communicates, the
algorithm requires it to broadcast all of the observations received since the last
time that it communicated. There are several shortcomings to this approach.
First, it is unnecessarily wasteful, forcing agents to broadcast observations
that do not serve to improve team performance. Second, it can deal only
with communication limitations that are represented through a fixed cost of
communication. The algorithm in its original form does not enable agents to
make efficient use of limited communication bandwidth.

Given a limited bandwidth availability of k observations, the goal is to find
those k observations that would most increase the expected team reward if
communicated. While this can be done exhaustively by calculating the value
of information of each subset of size k of an agent’s observation history, it is
intractable for run-time decision making.

Instead, we introduce the BuildMessage heuristic. The intuition is as
follows: The agent can calculate aC , the joint action that the team would
perform if the agent could broadcast its entire observation history. From this
agent’s perspective, aC is the best possible action that the team could take,
given all of the available information. If aC is the same as the action that would
be performed without communication, it is clear that the agent cannot ex-
pect that communicating only a subset of observations will improve expected
reward. If, however, communication could potentially improve the team’s se-
lection of a joint action, then it seems logical to select those observations that
most increase the desirability of choosing aC . In essence, BuildMessage is
a hill-climbing heuristic that greedily selects those observations that, when
integrated into the joint belief, result in the highest expected reward for the
action aC .

While BuildMessage is not optimal, its run time is only polynomial in
the length of the observation history. The parameters of the heuristic make it
applicable to both paradigms of communication that were discussed earlier. If
communication has a fixed cost and the goal is simply to minimize the number
of observations communicated, k can be set to t, the number of observations
in the agent’s observation history. This enables BuildMessage to select as
many observations as needed to change the joint action to aC , but no others.
If there is a bandwidth limitation of k observations, ε should be close to 0,
indicating that communication of up to k messages is allowed as long as there is
even a marginal improvement in expected reward. Table 2 shows the new Dec-

Comm-Selective algorithm, which utilizes the BuildMessage heuristic to
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BuildMessage(L,ωj , ε, k)
aNC ← arg maxaEvaluate(a, L)
L′ ← prune(ωj , L)
aC ← arg maxaEvaluate(a, L′)
if Evaluate(aC , L′) - Evaluate(aNC , L′) ≤ ε

return ∅
else

ωC ← ∅
while (|ωC | ≤ k) ∧ (aNC 6= aC)

vMAX ← −∞
for each ω ∈ ωj

L′ ← prune(ω,L)
v ← Evaluate(aC ,L′)
if v > vMAX

vMAX ← v

ωMAX ← ω

ωC ← ωC ◦ 〈ωMAX〉
L ← prune(ωMAX ,L)
ωj ← ωj − ωMAX

aNC ← arg maxaEvaluate(a, L)
return ωC

Table 1. The BuildMessage heuristic greedily selects the observations that lead to
the greatest increase in expected reward for aC , the action that would be executed
if the agent communicated its entire observation history.

choose when and what to communicate. It is invoked in any timestep when a
particular agent is allowed to communicate (i.e. there is bandwidth available
for it to use in this timestep).

Dec-Comm-Selective(Lt, ωt
j , ε, k)

ωC ← BuildMessage(Lt, ωt
j , ε, k)

if |ωC | > 0
communicate ωC to teammates
Lt ← prune(ωC , Lt)
ω

t
j ← ω

t
j − ωC

if message ω
t
i was received from teammate i

Lt ← prune(ωt
i, L

t)
a ← arg maxaEvaluate(a, Lt)
take action a

receive observation ωt+1

j

ω
t+1

j ← ω
t
j ◦ 〈ω

t+1

j 〉
Lt+1 ← ∅
for each Lt

i ∈ L
t

Lt+1 ← Lt+1 ∪ growTree(Lt
i, a)

return [Lt+1, ωt+1

j ]

Table 2. One time step of the Dec-Comm-Selective algorithm for an agent j
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5 Experimental Results

5.1 Multi-agent Tiger Domain

The multi-agent tiger problem [2] is a two-agent extension to the classical
tiger problem [17]. This domain is comprised of a room with two doors. Behind
one door is a tiger, and behind the other is a treasure. Each agent may either
choose to open a door or to perform Listen, an information-gathering action
that provides a noisy observation about the position of the tiger. The goal
of the problem is to avoid the tiger and instead to open the door hiding the
treasure.

To make this an interesting benchmark for multi-agent systems, an ex-
plicit coordination problem is built into the domain. The maximum reward is
obtained when both agents simultaneously open the door with the treasure. A
penalty is incurred when both agents open the door with the tiger. However,
the worst penalty occurs when each agent opens a different door. This coordi-
nation problem requires the agents to consider the actions of their teammates
when making their own decisions.

Our experimental results demonstrate that the Dec-Comm-Selective

algorithm enables a team of agents to make execution-time communication
decisions not only about when to communicate, but also about what to com-
municate, ensuring that they do not send unnecessary information. Table 3
summarizes the results of the experiment. We generated centralized a policy
for the team using the Cassandra POMDP solver [15]. We then ran 1000 tri-
als each of the Dec-Comm and Dec-Comm-Selective algorithms, allowing
the team to execute for 6 timesteps in each trial. The Dec-Comm-Selective

algorithm enables agents to broadcast almost 30% less observations with only
a small reduction in performance.

Average Average #
Reward Communications

Free Communication 11.95 10.0

Dec-Comm 9.35 5.14

Dec-Comm-Selective 8.41 3.68

Table 3. Results for the tiger problem.

5.2 Colorado/Wyoming Domain

While the tiger domain is useful for evaluating communication strategies, in
that it encodes a non-transition independent coordination problem in which
agents must act jointly to maximize expected reward, it is missing other char-
acteristics that are necessary to illustrate the full range of communication
decisions. In particular, the tiger domain has only two possible individual ob-
servations. In this paper, we introduce the Colorado/Wyoming domain that,
in addition to sharing the useful characteristics of the tiger domain, also has
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many possible observations, and those observations have different utilities with
respect to team performance.

In this domain, two agents start one of two possible 5x5 grid worlds, Col-
orado or Wyoming, and must meet in a predetermined location. If they are
in Colorado, their goal is to meet up in Denver, at grid position (2,4). If the
agents are in Wyoming, they must rendezvous in Cheyenne, located at grid
position (5,5) (see Figure 1). Each agent can move North, South, East, or
West, with each move succeeding with probability p = 0.95 and incurring
a cost of -1. An agent can also Stop or send up a Signal. Similarly to the
multi-agent tiger domain, the Colorado domain contains an explicit coordi-
nation problem. If both agents are at the correct goal location when they
simultaneously send up a Signal, they receive a joint reward of +20. If they
send up simultaneous Signals from an incorrect location, they receive a re-
ward of -50. However, if only one agent Signals, or if they signal in different
locations, the team incurs a penalty of -100.

(a) (b)

Fig. 1. Figure (a) is one possible configuration of the two agents in Colorado, with
the goal, Denver, at (2,4). Figure (b) is one possible configuration of the two agents
in Wyoming, with Cheyenne located at (5,5).

In order to progress toward the correct goal location, the agents must ob-
serve their environment. Both Colorado and Wyoming contain flat and moun-
tainous regions. However, the probability that an agent will observe Moun-

tain in Colorado is slightly higher than observing it in Wyoming. Likewise,
the observation Plain is more probable in Wyoming. Colorado and Wyoming
also contain distinctive tourist attractions. It is somewhat likely that an agent
will see a sign for PikesPeak in Colorado or a sign for OldFaithful in
Wyoming, but very unlikely that these would be observed in the opposite
state. Because an agent is much more likely to observe PikesPeak in Col-
orado than in Wyoming, but only slightly more likely to see a Mountain, it is
clear that a PikesPeak observation would be more valuable to communicate
to a teammate.

In our experiment, we demonstrate that the BuildMessage heuristic is
able to identify and choose to communicate important observations. We com-
pared its performance to the performance achieved by choosing random ob-
servations. A centralized policy for the team was generated using the Q-MDP
heuristic [16]. We ran 1000 trials of each heuristic, with 10 timesteps per trial.
The bandwidth limitation that we applied allowed agents to communicate one
observation every two timesteps. Table 4 shows the results of the experiment.
The BuildMessage heuristic clearly outperforms a random selection of ob-
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servations, demonstrating that it successfully identifies observations that have
high value of information.

Average Average #
Reward Communications

Heuristic 4.70 4.29

Random 0.94 4.56

Table 4. Results for the Colorado/Wyoming problem.

We alse performed an experiment to demonstrate the utility of our ap-
proach even in domains in which agents can operate independently. In this
experiment, we added an absorbing state to the domain. Each agent transi-
tions to that state when it Signals. Reward is additive, with no requirement
that agents Signal simultaneously. This is a problem that can be solved with
independent single-agent POMDPs. However, as the results in Table 5 show,
the team still benefits from communication. When agents communicate their
observations to each other, they are able to solve the problem more efficiently,
accruing greater reward. Our algorithm enables the team to communicate
those observations that will improve team performance.

Average Reward

Independent POMDPs 3.78

Dec-Comm-Selective 4.23

Free Communication 5.27

Table 5. Mean discounted reward for the modified Colorado/Wyoming problem.

6 Conclusions and Future Work

This paper discusses the need to reason about what to communicate when co-
ordinating a multi-agent team. We identify two paradigms of communication,
and show that it is insufficient, particularly in the case where the communica-
tion paradigm is limited bandwidth availability, to reason only about when
to communicate. We provide a polynomial-time heuristic for selecting those
observations that are, within the parameters of limited communication, most
valuable for team performance and demonstrate the success of this algorithm
experimentally.

In this work, we make decisions about which observations to communicate.
There are domains in which a finer granularity would be beneficial, where the
question to be answered is which features of the state are most relevant to
team performance. Factored representations operate over these state and ob-
servation features, and we intend to investigate their applicability to our work.
We also intend to apply our approach to domains in which observation prob-
abilities vary more from state to state. We believe that these domains pose an
interesting challenge to the problem of reasoning about value of information.
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