
Integrating a Command Shell Into a Web Browser

Robert C. Miller and Brad A. Myers
Carnegie Mellon University

{rcm,bam}@cs.cmu.edu

Abstract

The transition from command-line interfaces to graphi-
cal interfaces has resulted in programs that are easier to
learn and use, but harder to automate and reuse. Another
transition is now underway, to HTML interfaces hosted
by a web browser. To help users automate HTML in-
terfaces, we propose thebrowser-shell, a web browser
that integrates a command interpreter into the browser’s
Location box. The browser-shell’s command language
is designed for extracting and manipulating HTML and
text, and commands can also invoke local programs.
Command input is drawn from the current browser page,
and command output is displayed as a new page. The
browser-shell brings to web browsing many advantages
of the Unix shell, including scripting web services and
creating pipelines of web services and local programs.
A browser-shell also allows legacy command-line pro-
grams to be wrapped with an HTML/CGI interface that
is graphical but still scriptable, and offers a new shell
interaction model, different from the conventional type-
script model, which may improve usability in some re-
spects.

1 Introduction

The transition from command-line interfaces to graph-
ical interfaces carries with it a significant cost. In the
Unix shell, for example, programs accept plain text as
input and generate plain text as output. This makes it
easy to write scripts that automate user interaction. An
expert Unix user can create sophisticated programs on
the spur of the moment, by hooking together simpler
programs with pipelines and command substitution. For
example:

kill ‘ps ax | grep xterm | awk ’{print $1;}’‘

Appeared inProceedings of USENIX 2000 Annual Technical
Conference,San Diego, CA, June 2000, pp 171-182. Best
student paper award.

This command usesps to list information about running
processes,grep to find just thexterm processes,awk
to select just the process identifiers, and finallykill to
kill those processes.

These capabilities are lost in the transition to a graphical
user interface (GUI). GUI programs accept mouse clicks
and keystrokes as input and generate raster graphics as
output. Automating graphical interfaces is hard, unfor-
tunately, because mouse clicks and pixels are too low-
level for effective automation and interprocess commu-
nication. Attempts to introduce Unix shell features like
pipelining into graphical user interfaces [3, 6, 7, 8, 15,
16] have been unsuccessful, largely because they were
not integrated well with existing applications, required
extra work from application developers to expose hooks
and programming interfaces, or were too hard to use.

With the advent of the World Wide Web, another tran-
sition is underway, this time to distributed web applica-
tions that run on a web server and interact with the user
through a web browser. Most web services accept input
from HTML forms and generate output as HTML pages.
Since HTML is textual and capable of being parsed and
manipulated, we have the opportunity to recover some of
the interactive automation capabilities that were avail-
able in the Unix shell, but missing in graphical inter-
faces. Consider the following web-browsing tasks that
could be partially or totally automated:

• Download and print a group of links on a page;

• Compare airfares and schedules for several choices
of departure and arrival dates;

• Look up a colleague in the online university phone-
book, obtain a home address, locate the address on
a map, and get driving directions;

• Given a list of books to read, search for each book
in the local library catalog, and if the book is not on
the shelves, buy it from an online bookstore;

• Make a smart alarm clock that announces the cur-
rent temperature from an online weather report, and

the time until the next bus departs from an online
schedule, while you dress in the morning.

As a step towards automating these tasks and others, we
have extended a web browser in several ways:

1. Embedding a pattern language for matching text
and HTML, and a suite of text-processing tools for
extracting and manipulating web page data.High-
level pattern-matching and text manipulation are
essential to web automation, acting as aglue lan-
guagefor connecting unrelated web services and
programs.

2. Embedding a scripting language and integrating a
command interpreter into the Location box.In ad-
dition to accepting a typed URL, the browser win-
dow’s Location box can also accept a typed com-
mand with arguments. A command may be a built-
in command, a user-defined script, or an external
program. The built-in scripting language includes
commands for automatic web browsing, such as
clicking on hyperlinks, filling out forms, and ex-
tracting data from web pages.

3. Using the browser window to display command
output and construct pipelines of commands.When
a command is invoked, it takes its input from the
current page in the browser window, and sends its
output back to the browser window as a new page.

4. Including executed commands in the browsing his-
tory. Forward and Back navigate through command
output pages as well as web pages. Part of the his-
tory can be extracted and saved as a script for later
execution.

We have implemented these extensions in a proto-
type web browser named LAPIS (Lightweight Archi-
tecture for Processing Information Structure). The first
extension, consisting of a pattern language and text-
processing tools, was described in a previous paper [14],
which is summarized below. This paper focuses on the
other three features, which integrate a command shell
into the web browser to create abrowser-shell.

The browser-shell addresses the problem of interactive
web automation by allowing the user to apply patterns,
script commands, and external programs directly to the
browser page. For one-shot tasks, commands can be in-
terleaved with manual browsing to perform the task as
quickly and directly as possible. For repeated tasks, the
user can interactively define a script by invoking a se-
quence of commands on example data, using the Back

button to correct mistakes, and then copying the com-
mand sequence out of the browsing history and saving it
as a script.

The browser-shell concept has implications beyond web
automation, two of which are considered in this paper:

1. HTML interfaces for local programs.Currently,
programs with HTML interfaces must be installed
in a web server in order to handle form submis-
sions. LAPIS can submit forms to local programs
by the Common Gateway Interface (CGI) [17], an
existing standard used by web servers. This opens
the possibility of running HTML applications en-
tirely locally. HTML offers benefits of both a
graphical user interface (GUI) and a command-line
interface (CLI). An HTML interface can be as easy
to learn and use as a GUI, yet still open to au-
tomation like a CLI. As a demonstration, we have
wrapped an HTML interface around the Unixfind
program.

2. Using the browser as a command shell, in place of
the Unix shell or MS-DOS command prompt.The
browser-shell can be used to invoke local programs,
but it behaves differently from a conventional type-
script shell. Whereas a typescript shell interleaves
commands with program output in the same win-
dow, a browser-shell displays commands and pro-
gram output in separate parts of the browser win-
dow, and automatically redirects a program’s in-
put from the current page. These differences make
some tasks easier, such as viewing program output
and constructing pipelines, but others harder, such
as running legacy programs that use standard input
to interact with the user. The tradeoffs are discussed
in more detail in section 5.

The remainder of this paper is organized as follows. Sec-
tion 2 covers related work. Section 3 describes impor-
tant features of the LAPIS browser-shell, including the
pattern language, the scripting language, and invocation
of external programs. Section 4 describes our proto-
type implementation of LAPIS and contrasts some im-
plementation alternatives. Section 5 discusses some of
the implications of integrating a command shell into a
web browser, in particular creating local programs with
HTML interfaces and using the browser as an alternative
interface to the system command prompt. Section 6 re-
ports on the status of the LAPIS prototype, and Section 7
concludes.

2 Related Work

Several systems have addressed the problem of web au-
tomation. One approach ismacro recording, typified by
LiveAgent [11]. LiveAgent automates a task by record-
ing a sequence of browsing actions in Netscape through
a local HTTP proxy. Macro recording requires little
learning on the part of the user, but recorded macros suf-
fer from limited expressiveness, often lacking variables,
conditionals, and iteration.

Another approach isscripting, writing a program in
a scripting language such as Perl, Tcl, or Python.
These scripting languages are fully expressive, Turing-
complete programming languages, but programs written
in these languages must be developed, tested, and in-
voked outside the web browser, making them difficult to
incorporate into a web user’s work flow. The overhead
of switching to an external scripting language tends to
discourage the kind of spur-of-the-moment automation
required by the tasks described above, in which interac-
tive operations might be mixed with automation in order
to finish a task more quickly.

A particularly relevant scripting language is WebL [9],
which provides high-levelservice combinatorsfor in-
voking web services and amarkup algebrasimilar to
the LAPIS pattern language for extracting results. Like
other scripting languages, WebL lacks tight integration
with a web browser, forcing a user to study the HTML
source of a web service to develop markup patterns and
reverse-engineer form interfaces. In LAPIS, web au-
tomation can be done while viewing rendered web pages
in the browser, and simple tasks can be automated en-
tirely by demonstrating the steps on examples.

Other systems have tackled more restricted forms of web
automation by demonstration. Turquoise [13] and In-
ternet Scrapbook [22] construct apersonalized newspa-
per, a dynamic collage of pieces clipped from other web
pages, by generalizing from a cut-and-paste demonstra-
tion. SPHINX [12] creates a web crawler by demonstra-
tion, learning which URLs to follow from positive and
negative examples.

Wrapping GUI frontends around CLI programs is a
common way to support both ease-of-use and scriptabil-
ity. Many integrated development environments follow
this pattern, in which the graphical user interface invokes
the compiler, linker, and other tools using command-line
interfaces. Particularly relevant is the Commando dia-
log box system in the Macintosh Programmer’s Work-
shop [1], which allows a developer to specify a dialog
box interface for an arbitrary Macintosh command-line
program. A Commando dialog box resource is an ab-
stract description specifying the dialog box controls and

how the controls are mapped to command-line options.
In that sense, it resembles an HTML interface, but is
more platform-dependent than HTML.

Others have investigated wrapping HTML interfaces
around command-line programs on a webserver, but not
on the client. For example, Phanouriou and Abrams [19]
described an HTML interface that presented status infor-
mation about a web server (network, filesystem, mem-
ory, kernel, etc.) obtained from Unix commands.

The browser-shell is not the first alternative to the stan-
dard typescript Unix shell. Another is Sam [21], a
graphical text editor which integrates external program
execution in three ways: “< command” replaces the
current selection with the output of a command, “>
command”runs the command with the current selec-
tion as input, and “| command” redirects both input
and output. The Emacsshell-command-on-regioncom-
mand provides similar capabilities. In a later editor,
Acme [20], each external command’s output appears in a
new window, with atag linesimilar to a browser’s Loca-
tion box that can be used to invoke another external pro-
gram. Unlike Sam, Acme had no provision for supply-
ing a command’s input from a window, and both systems
lacked the output history provided by a browser-shell.

3 User Interface

We now describe some important features of the
browser-shell user interface. The first section is a sum-
mary of some previous work on which we are building.
Subsequent sections describe new work: the command
interpreter, web automation, creating web scripts by ex-
ample, and invoking external programs and CGI pro-
grams.

3.1 LAPIS

The web browser we used to prototype the browser-shell
is called LAPIS (Figure 1), part of a system of generic
tools for structured text that we calllightweight struc-
tured text processing[14]. Lightweight structured text
processing enables users to define text structure interac-
tively and incrementally, so that generic tools can op-
erate on the text in structured fashion. Our lightweight
structured text processing system has four components:

• a pattern languagefor describing text structure;

• parsersfor standard structure, such as HTML and
programming language syntax;

Figure 1: The LAPIS web browser, displaying a web page that lists new cars. The page structure is described by
patterns shown in the inset window (Text Constraint Editor). Some of the terms used in these patterns (Row, Link,
etc.) are defined by other patterns not shown, and others are defined by the built-in HTML parser. The user has
entered a pattern in the Find box to highlight certain cars (rear-wheel drive Kias), and is now about to run a command
in the Command box to sort all cars by horsepower.

• tools for manipulating text using structure, in-
cluding sorting, searching, extracting, reformatting,
editing, computing statistics, graphing, etc;

• a document viewer(in this case, a web browser)
for viewing documents, developing and testing pat-
terns, and invoking tools.

LAPIS includes a new pattern language calledtext con-
straints. Text constraints describe a set of regions in
a page in terms of relational operators, such asbefore,
after, in, and contains. Text constraints can refer to
structure defined by arbitrary parsers, such as the built-
in HTML parser that identifies HTML elements and as-
signs them names, such as Link, Paragraph, and Head-
ing. A single text constraint pattern can refer to mul-
tiple parsers — for example,Line at start of
Function refers to bothLine , a name defined by a
line-scanning parser, andFunction , a name defined
by a programming-language parser. In general, text con-
straints are designed to be more readable and compre-
hensible for users than context-free grammars or regular
expressions, because a structure description can be re-
duced to a list of simple, intuitive constraints which can
be read and understood individually. More details about
the text constraints language can be found in a previous
paper [14].

The LAPIS browser includes several tools for transform-
ing web pages. For example,keepextracts a set of re-
gions matching a text constraint pattern,deletedeletes
a set of regions,sort sorts a set of regions in-place, and
replacereplaces a set of regions with some replacement
text. In the LAPIS browser described in a previous pa-
per [14], a tool could only be invoked from a menu, and
its output was directed to a new page in the browser. The
browser-shell extensions described in this paper make it
possible to invoke these tools from the Location box and
from user-defined scripts.

3.2 The Browser-Shell

In order to create scripts of commands, we embedded
Tcl [18] into LAPIS. Tcl was chosen partly because of
its syntactic simplicity, and partly because a good Java
implementation was available [5]. Tcl is also well-suited
to interactive command execution.

Instead of presenting a Tcl interpreter in a separate win-
dow, LAPIS integrates the interpreter directly into the
browser window. Tcl commands may be typed into the
Location box. The typed command is applied to the cur-
rent page, and its output is displayed in the browser as a
new page that is added to the browsing history.

Using the Location box as a command line has several
advantages. The page generated by a command can be
browsed like a page generated by a URL. The browsing
interface — Back, Forward, Stop, and Reload — also
applies to command outputs. The Back button returns
the browser to the previous page, Stop aborts a long-
running command, and Reload runs the command again.

Since either a URL or a command can be typed into the
Location box, LAPIS must be able to distinguish be-
tween them. The problem is trivial if the typed entry be-
gins with a protocol prefix, such ashttp: or file: ,
and LAPIS also recognizes the protocolcmd: for in-
voking a command unambiguously. If the typed entry
does not begin with a prefix, LAPIS tries every possi-
ble interpretation: first as a command to execute, then as
a filename to display, then as a domain name for a web
server. This is an extension of the heuristics already used
by the Location box of most web browsers.

For security reasons, LAPIS only executes acmd: URL
if it originates locally — e.g., if it is typed into the Loca-
tion box or found in a page loaded from the local filesys-
tem. A link in a remote web page cannot invoke a Tcl
command.

3.3 Web Automation

Web browsing has two basic actions: clicking on hyper-
links and submitting forms. Automating web browsing
requires equivalent script commands for these actions.

Clicking on a link has the same result as typing in its
URL in the Location box. Thus the script command for
clicking on a link is simply the link’s URL, such as:

http://weather.yahoo.com/

For some links, however, the URL varies depending on
when the page is viewed. Variable links are often found
in online newspapers, for example, where links to top
stories change from day to day. Theclick command
can be used to click on a variable link by describing its
location in the web page with a LAPIS text constraint
pattern. For example:

http://www.salon.com/ # Start at Salon
click {Link after Image in Column3}

Click on top story
(curly braces are Tcl quot-

ing)

For entering data into forms, theenter command
is provided, with two arguments. The first argu-
ment is a pattern describing the form field to af-
fect. Since HTML form fields are named, this pat-
tern may simply be the field name. Alternatively, the

pattern may describe the field in terms of its con-
text (e.g., TextBox just after "Email Ad-
dress:"), which has the advantage of being compre-
hensible without looking at the HTML source. The sec-
ond argument toenter specifies the value to enter in
the field. For text fields, this value is entered in the field
directly. For menus or lists, the value is selected in the
list. For radio buttons or checkboxes, the value should
be “on” or “off” (or yes/no, true/false, or 0/1).

Forms are submitted either by aclick command de-
scribing the form’s submit button. For example, here is
a complete script that searches Google for the USENIX
2000 conference home page:

http://www.google.com/
enter {Textbox just after \

"Search the web us-
ing Google"} \

{USENIX 2000}
click SubmitButton

LAPIS also provides script commands for other web
browsing actions, including Home, Back, Forward,
Stop, Reload, and Save.

The examples presented so far have been web-site-
specific, but some browsing tasks are sufficiently uni-
form across web sites to be handled by a generic script.
For example, the following script can log into many web
sites, assuming the user’s login name and password have
been stored in the Tcl variablesid andpassword :

enter {Textbox \
just after Text containing \
("lo-

gin"|"email"|"id"|"user")} \
$id

enter {Textbox just after Text con-
taining \

"password"} \
$password

click SubmitButton

3.4 Automation by Demonstration

To create a browsing script quickly, the user candemon-
strateit by recording a browsing sequence. The demon-
stration begins with an arbitrary example page, theinput
page, showing in the browser. Invoking the Demonstrate
command pops up a new browser window, in which the
browsing demonstration will take place. A new win-
dow is created so that the browsing sequence can refer to
the input page for parameters. Like any LAPIS browser
window, the Demonstrate window records a browsing
history: URLs visited and commands typed. Unlike a
normal browser window, however, the Demonstrate win-
dow’s history also records user events in form controls.

For example, if the user types into a form field, the his-
tory will record an equivalententer command.

To fill in a form with text from the input page, the user
can make a selection in the input page, then drag-and-
drop (or copy-and-paste) to a form field in the Demon-
strate window. If the copied text was selected by search-
ing for a pattern, then this action records the command
enter field-name pattern in the history. If the
copied data was selected manually, then the command
enter field-name {Selection} is recorded in
the history. When the script is run at a later time,Se-
lection will return the user’s selection at that time.
More complex dependencies can be expressed by typ-
ing a Tcl command instead of pointing-and-clicking.
For example, if a radio button should be selected only
if the input page has certain features, then the user
might type the commandif {[find pattern]}
{click field-name } .

Using Back and Forward, the user can revise the
demonstration as necessary until the desired results are
achieved. The browsing history, which is essentially a
Tcl script, can also be opened in an editing window,
where the user can insert conditionals, iteration, and
comments, if desired. When the user is satisfied with
the demonstration, the Demonstrate window is closed,
the history is saved as a script, and the script becomes
available as a named command.

LAPIS demonstrations have two advantages over
the macro recorders in previous systems, such as
LiveAgent [11]. First, the recorded transcript is repre-
sented by the browsing history, which is visible, easy
to navigate, and very familiar. A crucial part of mak-
ing this work is that LAPIS inserts commands as well as
URLs in the browsing history. Second, an experienced
user can generalize the demonstration on-the-fly by typ-
ing commands at crucial points instead of pointing-and-
clicking. Since a full scripting language is supported,
the resulting scripts can be significantly more expressive
than recorded macros, without taking much more time
to develop.

3.5 Script Optimization

A script created by demonstration may include unnec-
essary steps, which may be expensive if they fetch web
pages. To address this problem, LAPIS includes an op-
timizer that tries to compact the browsing script. For
example, a sequence of simple link-clicking may result
in a list of URLs:

Start at Yahoo
http://www.yahoo.com/

Click on Weather
http://weather.yahoo.com/

Click on US
http://weather.yahoo.com/regional/US.html

Since the URLs are constant, depending neither on the
input page nor on previous pages in the demonstration,
the optimizer can delete all but the last, saving several
page fetches.

The optimizer can also streamline form submissions.
Submitting a form normally requires two page fetches,
one to retrieve the form and another to submit the form.
The optimizer can eliminate the first fetch by hard-
coding the form submission URL, the form field names,
and their values.

These optimizations are not always safe, however. For
example, some forms have a variable submission URL
or variable default values, often referring to unique ses-
sion identifiers or persistent state. Thus the optimizer
does not run by default. Instead, the user selects some or
all of the script and invokes the optimizer on it manually.
In the future, the optimizer may be able to gather infor-
mation from repeated runs of a script to determine which
optimizations would be safe to make automatically.

An optimized form submission may stop working cor-
rectly if the form changes, which happens from time to
time when web sites are redesigned or moved. Gross
changes can be detected by various techniques, such as
the modification time or checksum of the form page, but
the cost of detecting changes in just theform(as opposed
to page content around the form, which might change of-
ten) would overwhelm the savings of optimization. This
is a special case of a general challenge for web automa-
tion: recognizing and dealing with change on the Web.
LAPIS helps with the problem by providing a rich pat-
tern language, enabling browsing scripts to be insulated
from many kinds of changes, but otherwise leaves de-
tecting and debugging broken scripts to the user.

3.6 External Programs

In addition to built-in Tcl commands, LAPIS can also
run an external command-line program from the Lo-
cation box. If the command name is not found as a
built-in Tcl command or user-defined script, then LAPIS
searches for an external program by that name. If an ex-
ternal program happens to share the same name as a Tcl
command, the user can force the external program to run
with theexec: prefix.

Like a Tcl command, an external program is applied to
the current page and displays its output as a new page

added to the browser history. For example, if the user
types (on BSD-style Unix)ps aux , then the browser
displays a list of running processes. If the next command
is grep xclock , then the process listing is filtered to
display only those lines containing “xclock.”

To make this work with legacy programs such aspsand
grep, the external program is invoked in a subprocess
with its input and output redirected. Standard input is
read from the current page of the browser, passing the
HTML source if the current page is a web page. Stan-
dard output is sent to a new page of the browser, which
is displayed incrementally as the program writes output.
Standard error is sent to a subframe of the page, to sepa-
rate it from standard output.

A program’s output may be parsed and manipulated like
any other page in LAPIS. For example,ps aux dis-
plays information about running processes:

USER PID %CPU %MEM SIZE RSS TTY...
bin 160 0.0 0.4 752 320 ? ...
daemon 194 0.0 0.6 784 404 ? ...
rcm 294 0.0 1.0 1196 660 ? ...

The output ofps can be parsed by simple LAPIS text
constraint patterns:

Process = Line,
but not start-

ing with "USER";
User = Alphanumeric at start of Pro-
cess;
PID = Number just after User;

These identifiers can be used with LAPIS commands
that search and manipulate the output ofps:

sort processes by PID
sort Process -by PID -order numeric

display only xterm processes
keep {Process containing "xterm"}

kill all xterm processes
kill [extract {PID in Process \

containing "xterm"}]

By default, patterns and commands are applied only to
standard output, but standard error may also be pro-
cessed by referring to the Tcl variable$error , as in
find {"Warning:"} $error.

3.7 CGI Programs

If an external program outputs HTML instead of plain
text, the browser-shell detects it and renders it as a web

page. HTML output is detected by several simple heuris-
tics, such as an initial<html> or <doctype> tag.

The HTML output may contain embedded forms. To
submit a filled-out form back to the external program,
LAPIS passes form parameters using the Common Gate-
way Interface (CGI) [17]. CGI passes form fields and
other request information by setting environment vari-
ables, such asQUERY_STRING. Although CGI is com-
monly used by web servers to invoke external programs,
no major web browser can invoke a CGI program lo-
cally. (The closest we’ve found is the Help Viewer in
KDE 1.1, which displays HTML help documents and
uses CGI to invoke a local search engine.) One bene-
ficial side-effect of using CGI to communicate with ex-
ternal programs is that existing CGI scripts can be run
directly by the browser-shell, without installing them in
a web server. This feature may be useful for developing
and testing CGI applications outside a web server.

Whether a form is being submitted or not, LAPIS always
sets the CGI environment variables when it invokes an
external program. A program can use the presence or
absence of these variables to determine whether it was
invoked from the browser-shell, in which case it can
present an HTML interface and act like a CGI program,
or from the ordinary typescript shell, in which case it
should present a text-only or command-line interface.

One use for this facility is wrapping a friendlier HTML
interface around an existing command-line program. For
example, some users have trouble remembering the syn-
tax for the Unixfind command, which searches for files
matching certain constraints.Find supports a variety of
predicates on filename, date, user ownership, etc., and
Boolean operators for combining predicates. We wrote
a Perl CGI script wrapper aroundfind which displays
a simple HTML form (Figure 2). The first part of the
wrapper script (Figure 3) tests whether the script is run-
ning under LAPIS. If not, or if the user passed com-
mand line arguments, then the wrapper simply invokes
the originalfind. Otherwise, the script prints an HTML
page containing the form. When the form is filled out
and submitted back to the wrapper script, the script in-
vokesfind appropriately.

The HTML wrapper makes it possible to usefind with-
out learning or remembering its command-line syntax.
A GUI frontend forfind would offer the same benefits,
but at greater cost: a GUI frontend has no ready hooks
for automation, but the HTML form interface can be
scripted in LAPIS exactly as if it were a web service.
For example, a Java programmer may want a script that
searches all subdirectories for files ending with.class
and stores them in a ZIP file. The user pops up a Demon-
strate window, invokesfind to display its HTML form,

Figure 2: HTML interface for Unixfind.

#!/usr/bin/perl -w

Check if invoked outside of browser-shell
or passed arguments.
if (!defined $ENV{"GATEWAY_INTERFACE"}

|| @ARGV > 0) {
Pass arguments directly to find
exec ("/usr/bin/find", @ARGV);

}

Otherwise act as CGI script.
use CGI qw/:standard/;

if (!param()) {
No form submitted.
Display the HTML interface.
exec "cat /usr/doc/find/find-form.html";

} else {
Handle form submission.
exec ("/usr/bin/find",

param("directory"),
param("search_subdirectories")

? () : ("-maxdepth", "1"),
"-name", param("name"),
"-print");

}

Figure 3: Perl wrapper forfind that displays the HTML
form interface shown in Figure 2 when invoked inside
the browser-shell. Form submissions are handled by the
Perl CGI.pm module.

fills in the form to search for files named*.class , and
applieszip to the resulting list of files. This sequence of
actions is then saved as a script. Thus the user can in-
cludefind in a script without learning its more complex
command-line interface.

4 Implementation

The browser-shell prototype described in this paper was
implemented by modifying an existing web browser,
LAPIS, originally designed to test new user interface
ideas. LAPIS is written in Java 1.1 using the HTML
layout componentJEditorPane from the Java Foun-
dation Classes. Before modification, LAPIS consisted of
about 18,000 lines of code. The browser-shell features
added about 2,000 lines of code. The LAPIS browser-

shell has been tested on Linux, Solaris, and Windows
NT.

Modifying a browser is not the only way to implement
browser-shell capabilities. Two other general strategies
exist for adding features to web browsers. One scheme
uses an internal browser extension mechanism, such as
a Netscape plugin, an Internet Explorer ActiveX com-
ponent, or a Java applet. The other scheme is an HTTP
proxy, external to the browser but running on the same
machine, that filters the browser’s HTTP requests.

Both schemes have the advantage of working with ex-
isting browsers, but lack of tight integration with the
browser makes some browser-shell features difficult or
impossible to implement. For example, neither scheme
would allow commands to be typed directly into the
browser’s Location box. Highlighting the results of pat-
tern matches would be much harder, as would monitor-
ing the user’s entries in form fields to generate scripts by
demonstration. The lack of control over the browser’s
user interface makes these browser-extension schemes
too constraining for use as a research testbed. For a de-
veloped product, however, one of these schemes may be
the best bet, even if it can only deliver a subset of the
capabilities described in this paper.

We suggest that there are several levels of browser-shell
complexity. Higher levels are harder to design and im-
plement, but deliver correspondingly greater benefits. In
increasing order of complexity, the levels are:

1. Local program invocation.Implementing this level
requires spawning a subprocess and redirecting its
input and output to the browser. This level is suffi-
cient for using the browser as a command shell.

2. Local CGI invocation. Implementing this level re-
quires encoding a form submission into environ-
ment variables and invoking a local program. This
level is sufficient to support local HTML interfaces
with form submission.

3. Embedded scripting language. Many web browsers
already embed Javascript, but do not support au-
tomatic browsing (i.e., a sequence of script com-
mands invoked on successive web pages). With au-
tomatic browsing, this level is sufficient to support
web automation.

4. Embedded pattern language. A pattern language
like text constraints enables the user to describe,
manipulate, and extract parts of web pages and pro-
gram outputs. This level acts as a glue language for
connecting unrelated information sources or pro-
grams, so an ideal pattern language should be ca-
pable of describing not only HTML, but also text
and XML.

5. Web automation by demonstration. Implementing
this level requires recording user events and gener-
alizing them into script commands. This level helps
novice users learn the scripting language and helps
expert users streamline the construction of scripts.

5 Discussion

We now discuss some general implications of integrat-
ing a command shell into a web browser, in particu-
lar the new applications, architectures, and interaction
styles that such a hybrid enables.

5.1 HTML Interfaces

Much interest in recent years has focused on creating
and deploying HTML-based applications that run in web
servers. The advantages of deploying an application as
a web service are well understood: it can be accessed
by millions of users at the click of a button, it can be
upgraded easily, and it can even be given away for free,
paid for by advertising. The most popular sites on the
Web are HTML interfaces in this sense.

The browser-shell opens up a new possibility: deploying
HTML interfaces on the client. There are still many rea-
sons to deploy applications on the client, including per-
formance, security, and ability to run disconnected from
the network. Current browsers cannot submit HTML
forms to client-side programs, however, forcing a client-
side HTML application to handle its user input in a
more complicated way (e.g., with Javascript, Java, or
ActiveX). The browser-shell’s ability to submit forms to
local programs allows client-side programs to have pure
HTML user interfaces, displayed entirely in the browser.

HTML interfaces have several advantages. First, an
HTML interface is easy to implement portably, since it
needs only the standard I/O library rather than larger,
less portable GUI libraries. Second, a wide variety of
HTML editors and CGI libraries already exist, making
the job easier. Third, compared to a command-line inter-
face, an HTML interface is easy to use, not only because
it is visual, but also because users are familiar with sim-
ilar interfaces on the Web. Finally, compared to a GUI,
an HTML interface is easier to script because it is declar-
ative and textual, allowing systems like LAPIS to parse
the interface and control it automatically.

Some applications are well-suited to HTML; others are
not. User input is limited to forms with standard con-
trols such as buttons, menus, and text fields, so appli-
cations that demand richer interaction would be poorly

suited. On the other hand, applications with high infor-
mation content, such as detailed help or reference mate-
rials, would be well-suited, since HTML makes it easy
to intersperse forms with formatted text, pictures, and
hyperlinks.

Any program that already has a command-line interface
is a prime candidate for an HTML interface. As ourfind
example showed, wrapping an HTML interface around
a legacy program is simple if the program takes all user
input as command-line arguments. Programs that con-
duct an interactive dialog with the user are trickier to
wrap, however, because the CGI protocol does not sup-
port persistent connections. The wrapper must be rein-
voked for every form submission. This problem could
be solved by a more complex wrapper that maintains its
own persistent connection to the legacy program, or by
an alternative form submission protocol with a persistent
connection to the wrapper.

HTML interfaces allow command-line programs to be
self-describing. Instead of the terse “usage” message
printed by command-line interfaces, a program running
in a browser-shell would display its HTML documenta-
tion, and embedded in the documentation itself would be
the program’s user interface. Thus, the usage message of
an HTML interface not only explains what the program
does, but also presents an interface for actually invoking
it.

5.2 New Shell Interaction Model

The web browser is becoming a central part of the desk-
top interface. Modern browsers, such as Microsoft In-
ternet Explorer and KDE’skfm[10], already include file
management among the web browser’s responsibilities.
Integrating the system command prompt is another step
along the same path, which makes sense because file
management and command execution are often inter-
twined.

The browser-shell interface behaves differently from a
traditional typescript shell, however. Whereas a type-
script shell interleaves commands with program output
in the same window, a browser-shell separates the com-
mand prompt from program output. The browser-shell
also automatically redirects program input from the cur-
rent browser page, and automatically sends program out-
put to a new browser page.

One effect of these differences is on scrolling. In a type-
script interface, long output may scroll out of the win-
dow. To view the start of the output, the user must ei-
ther scroll back, or else rerun the command with out-
put redirected tomoreor head. The browser-shell, by
contrast, initially displays thefirst windowful of out-
put, rather than thelast, reducing the need for scrolling.

When output is less than a windowful, a typescript can
become cluttered by outputs of several commands, forc-
ing the user to scan for the start of the latest output. The
browser-shell displays each program output on a new,
blank page. The overall effect of the browser-shell is
like automatically redirecting output tomore.

Unlike more, however, the browser-shell’s display is not
ephemeral. The displayed output can be passed as in-
put to another command, which allows pipelines to be
assembled more fluidly than in the typescript interface.
Developing a complicated pipeline, such asps ax |

grep xclock | cut -d ’ ’ -f 1 , is often an in-
cremental process. In typescript interfaces, where input
redirection must be specified explicitly, this process typ-
ically takes one of two forms:

• Repeated execution: runA and view the output;
then runA|B and view the output; then (B turned
out wrong) runA|B ′ and view the output; etc. This
strategy fails if any of the commands run slowly or
have side-effects.

• Temporary files: runA > t1 and examinet1 ;
then runB < t1 > t2 and examinet2 ; then (B
was wrong) runB′ < t1 > t2 , etc.

The browser-shell offers a third alternative: runA and
view the output; then runB (which automatically re-
ceives its input fromA) and view the output; then press
Back (becauseB was wrong) and runB′ instead. The
browser-shell displays each intermediate result of the
pipeline while serving as automatic temporary storage.

Automatic input redirection makes constructing a
pipeline very fluid, but it is inappropriate for programs
that use standard input for interacting with the user, such
aspasswd. Such programs cannot be run in a browser-
shell without modification, such as wrapping an HTML
interface around the program, or running the program in
a terminal emulator, possibly embedded in the browser-
shell window.

One problem with the browser-shell model is the lin-
ear nature of the browsing history. If the user runs A,
backs up, and then runs B, the output of A disappears
from the browsing history. To solve this problem, the
LAPIS prototype lets the user duplicate the browser win-
dow, including its history, so that one window preserves
the original history while the other is used to backtrack.
(Netscape’s New Window command worked similarly
before version 4.0.) A more complex solution might ex-
tend the linear browsing history to a branching tree [2].

6 Status and Future Work

The LAPIS web browser described in this paper, includ-
ing Java source code, is available from

http://www.cs.cmu.edu/~rcm/lapis/

LAPIS is only a prototype, but it demonstrates the ba-
sic ideas described in this paper. Unfortunately, the
LAPIS prototype is not robust enough for everyday
use, largely becauseJEditorPane renders many web
pages poorly. An important avenue of future work will
be to convert a production-quality web browser into a
browser-shell and experiment with using it on a daily
basis.

Several features are needed to make the browser-shell
more useful and more efficient as a command shell, in-
cluding:

• Background processes. Web browsers generally
stop loading a page when a new URL is typed in
the Location box. Similarly, LAPIS automatically
stops the currently executing command when a new
command is typed. As a result, only one command
can be running in each LAPIS browser window.
An improvement would be support for background-
process syntax. If a command ends with &, it could
continue running in the background, storing its out-
put in case the user ever backs up through the his-
tory.

• Handling large outputs. A command may gener-
ate too much output for the browser to display ef-
ficiently. The same problem often happens in type-
script shells, usually forcing the user to abort the
program and run it again redirected to a file. To
handle this problem, the browser could automati-
cally truncate the display if the output exceeds a
certain user-configurable length. The remaining
output would still be spooled to the browser cache,
so that the entire output can viewed in full if de-
sired, or passed as input to another program.

• Streaming I/O. A pipeline may process too much
data for the browser’s limited cache to store ef-
ficiently. Although the browser-shell’s automatic
I/O redirection could still be used to assemble the
pipeline (presumably on a subset of the data), the
pipeline would run better on the real data if its con-
stituent commands were invoked in parallel with
minimal buffering of intermediate results. The
browser-shell might do this automatically when in-
voking a script.

• Shell syntax. Expert users would be more comfort-
able in the browser-shell if it also supported con-
ventional operators for pipelining and I/O redirec-
tion, such as |, <, >, and > >. The most direct way
to accommodate expert users might be to embed an
existing shell, such asbashor tcsh, as an alternative
to Tcl.

7 Conclusions

We have integrated a command shell into a web browser,
and shown how this arrangement delivers benefits in
three areas: (1) web automation; (2) HTML user in-
terfaces for command-line applications; and (3) using a
web browser as a new way to interact with the system
command prompt.

We would hope that the next generation of web browsers
will include at least some of these features, enabling fu-
ture web users to put the power of automation to work in
browsing and manipulating the Web.

Acknowledgements

The authors are grateful to David Garlan, John Pane, and
the anonymous referees for their helpful suggestions on
improving this paper.

This research was funded in part by a USENIX Student
Research Grant.

References

[1] Apple Computer, Inc.Macintosh Programmer’s
Workshop. http://devworld.apple.com/tools/mpw-
tools/

[2] E.Z. Ayers and J.T. Stasko. “Using Graphic His-
tory in Browsing the World Wide Web.”Proc. 4th
International World Wide Web Conference WWW4,
December 1995, pp 259–270.

[3] K. Borg. “IShell: A Visual UNIX Shell.” Proc.
Conference on Human Factors in Computing Sys-
tems (CHI ’90), 1990, pp 201–207.

[4] M. A. Cusumano and D. B. Yoffie. “What Netscape
Learned From Cross-Platform Software Develop-
ment.”Comm. ACM,v42 n10, October 1999, pp
72–78.

[5] M. DeJong, et al. Jacl and Tcl Blend.
http://www.scriptics.com/software/java

[6] P. E. Haeberli. “ConMan: A Visual Programming
Language for Interactive Graphics.”Proc. ACM
SIGGRAPH 98,1988, pp 103–111.

[7] T. R. Henry and S. E. Hudson. “Squish: A Graph-
ical Shell for Unix.” Graphics Interface, 1988, pp
43–49.

[8] B. Jovanovic and J. D. Foley. “A Simple Graphics
Interface to UNIX.” Technical Report GWU-IIST-
86-23, George Washington University Institute for
Information Science and Technology, 1986.

[9] T. Kistler and H. Marais. “WebL - A Programming
Language For the Web.” InComputer Networks
and ISDN Systems(Proc. 7th International World
Wide Web Conference WWW7), v30, April 1998,
pp 259–270. Also appeared as DEC SRC Techni-
cal Note 1997-029.

[10] K Desktop Environment.KFM. http://www.kde.
org/

[11] B. Krulwich. “Automating the Internet:
Agents as User Surrogates.”IEEE Inter-
net Computing, v1 n4, July/August 1997.
http://computer.org/internet/v1n4/ krul9707.htm

[12] R. C. Miller and K. Bharat. “SPHINX: A Frame-
work for Creating Personal, Site-Specific Web
Crawlers.” InComputer Networks and ISDN Sys-
tems (Proc. 7th International World Wide Web
Conference WWW7), v30, April 1998.

[13] R. C. Miller and Brad A. Myers. “Creating Dy-
namic World Wide Web Pages By Demonstration.”
Carnegie Mellon University School of Computer
Science Tech Report CMU-CS-97-131 (and CMU-
HCII-97-101), May 1997.

[14] R. C. Miller and B. A. Myers. “Lightweight Struc-
tured Text Processing.”Proc. USENIX 1999 An-
nual Technical Conference, Monterey, CA, June
1999, pp 131–144.

[15] F. Modugno and B. A. Myers. “Typed Output and
Programming in the Interface.” Carnegie Mellon
University School of Computer Science Technical
Report, no. CMU-CS-93-134. March 1993.

[16] F. Modugno and B. A. Myers. “Pursuit: Visual Pro-
gramming in a Visual Domain.” Carnegie Mellon
University School of Computer Science Technical
Report, no. CMU-CS-94-109. January 1994.

[17] NCSA. Common Gateway Interface.
http://hoohoo. ncsa.uiuc.edu/cgi/

[18] J. Ousterhout. “Tcl: An Embeddable Command
Language.”Proc. USENIX 1990 Winter Technical
Conference, pp 133–146.

[19] C. Phanouriou and M. Abrams. “Transforming
Command-Line Driven Systems to Web Applica-
tions.” Proc. 6th International World Wide Web
Conference (WWW6), 1997, Santa Clara CA, pp
599–606.

[20] R. Pike. “Acme: A User Interface for Program-
mers.”Proc. USENIX 1994 Winter Technical Con-
ference.

[21] R. Pike. “The Text Editor sam.”Software Practice
& Experience, v17 n11, November 1987, pp 813–
845.

[22] A. Sugiura and Y. Koseki. “Internet Scrapbook:
Automating Web Browsing Tasks by Demonstra-
tion.” Proc. ACM Symposium on User Interface
Software and Technology (UIST 98), 1998, pp 9–
18.

